parent
d690c75399
commit
3baea9331e
@ -0,0 +1,152 @@ |
|||||||
|
import os |
||||||
|
import pandas as pd |
||||||
|
from datetime import datetime as dt, timedelta |
||||||
|
import sys, getopt |
||||||
|
import re |
||||||
|
from pathlib import Path |
||||||
|
import time |
||||||
|
from pprint import pprint as prt |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
contract_number_regex = "\d{3}-\d{7}-\d{3}" |
||||||
|
|
||||||
|
def create_line_divider(breakage_list: list): |
||||||
|
""" |
||||||
|
This allows for the creation of a custom data extractor |
||||||
|
Breakage list defines the split points that will be used for the line |
||||||
|
Example |
||||||
|
Given breakage_list [10, 20, 30] |
||||||
|
using slot_num 0 in the resulting extract_line_slot will yield |
||||||
|
characters 0 - 10 from the string. |
||||||
|
Slot 1 would give characters 10 - 20 |
||||||
|
""" |
||||||
|
def extract_line_slot(slot_num : int, line_string: str, debug : bool = False): |
||||||
|
""" |
||||||
|
Pulls data from a line/string using break points defined by the |
||||||
|
parent function. |
||||||
|
ONLY USE THIS FUNCTION THROUGH CREATION USING 'create_line_extractor' |
||||||
|
Will automatically convert numbers to floats |
||||||
|
""" |
||||||
|
assert(slot_num < len(breakage_list)+1) |
||||||
|
low_range = 0 if slot_num == 0 else breakage_list[slot_num-1] |
||||||
|
high_range = len(line_string) if slot_num == len(breakage_list) else breakage_list[slot_num] |
||||||
|
data = line_string[low_range:high_range].strip().replace(",", "") |
||||||
|
try: data = float(data) |
||||||
|
except: pass |
||||||
|
if debug: |
||||||
|
print(f"Slot num: {slot_num} | Low: {low_range} | High: {high_range} | Data: {data}") |
||||||
|
return data |
||||||
|
return extract_line_slot |
||||||
|
|
||||||
|
|
||||||
|
def net_invest_trial_balance(report: str, save_name: str): |
||||||
|
lines = report.splitlines() |
||||||
|
extracted_data_dict = { |
||||||
|
'CUSTOMER NAME' : [], |
||||||
|
'CURR INT RCVB' : [], |
||||||
|
'UNEARNED BLENDED' : [], |
||||||
|
'BLEND NET INV' : [], |
||||||
|
'LEASE NUMBER' : [], |
||||||
|
'GROSS CONTRACT' : [], |
||||||
|
'CURR RENT RCVB' : [], |
||||||
|
'UNEARN FIN' : [], |
||||||
|
'END DEPOSIT' : [], |
||||||
|
'SEC DEPOSIT' : [], |
||||||
|
'LEASE PYMTS' : [], |
||||||
|
'TOTAL' : [], |
||||||
|
'CONTRACT STAT' : [], |
||||||
|
'PAYMENTS RCVD' : [], |
||||||
|
'REM RENT RCVB' : [], |
||||||
|
'UNEARN RESID' : [], |
||||||
|
'PROV LOSS' : [], |
||||||
|
'NET RESERVE' : [], |
||||||
|
'UNEARN INC' : [], |
||||||
|
'BAL REMAINING' : [], |
||||||
|
'RESIDUAL' : [], |
||||||
|
'UNPAID INT' : [], |
||||||
|
'NET INV' : [], |
||||||
|
'UNEARNED IDC' : [], |
||||||
|
"LESSOR": [] |
||||||
|
} |
||||||
|
lessors = [] |
||||||
|
columns = list(extracted_data_dict.keys()) |
||||||
|
line0 = list(zip(columns[0:4], [0,3,4,5])) |
||||||
|
line1 = list(zip(columns[4:12], [i for i in range(0,8)])) |
||||||
|
line2 = list(zip(columns[12:19], [i for i in range(0,7)])) |
||||||
|
line3 = list(zip(columns[19:-1], [i for i in range(1,6)])) |
||||||
|
|
||||||
|
for l in [line0,line1,line2,line3]: |
||||||
|
print(f"\n{l}") |
||||||
|
|
||||||
|
data_extractor = create_line_divider([18,32,50,66,84,100,117]) |
||||||
|
for line in enumerate(lines): |
||||||
|
slot1 = data_extractor(0,line[1],False) |
||||||
|
if type(slot1) != str : continue |
||||||
|
if re.search(contract_number_regex, slot1) != None: |
||||||
|
data_section = lines[line[0]-1:line[0]+3] |
||||||
|
|
||||||
|
if data_section[0].find(".") == -1: |
||||||
|
data_section[0] = lines[line[0]-2] |
||||||
|
for ds in enumerate(data_section): |
||||||
|
if ds[1].find(".") == -1: |
||||||
|
if ds[0] < len(data_section) -1: |
||||||
|
for i in range(ds[0], len(data_section)-1): |
||||||
|
#print(f"{i}: { data_section[i]}") |
||||||
|
data_section[i] = data_section[i+1] |
||||||
|
#print(f"DELTA| {i}: { data_section[i]}") |
||||||
|
data_section[3] = lines[line[0]+3] |
||||||
|
else: |
||||||
|
data_section[3] = lines[line[0]+3] |
||||||
|
|
||||||
|
|
||||||
|
# [print(f"\n{d[0]}: {d[1]}") for d in enumerate(data_section)] |
||||||
|
# print('\n') |
||||||
|
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[0], False)) for c in line0] |
||||||
|
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[1], False)) for c in line1] |
||||||
|
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[2], False)) for c in line2] |
||||||
|
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[3], False)) for c in line3] |
||||||
|
extracted_data_dict["LESSOR"].append(extracted_data_dict["LEASE NUMBER"][-1][0:3]) |
||||||
|
if extracted_data_dict["LESSOR"][-1] not in lessors: |
||||||
|
print(extracted_data_dict["LESSOR"][-1]) |
||||||
|
lessors.append(extracted_data_dict["LESSOR"][-1]) |
||||||
|
print(lessors) |
||||||
|
for c in columns: |
||||||
|
print(f"C: {c} | {len(extracted_data_dict[c])}") |
||||||
|
print(lessors) |
||||||
|
dataframe = pd.DataFrame(extracted_data_dict) |
||||||
|
|
||||||
|
summary_series = [] |
||||||
|
for lessor in lessors: |
||||||
|
reduced_df = dataframe.loc[dataframe["LESSOR"] == lessor] |
||||||
|
del reduced_df["CUSTOMER NAME"] |
||||||
|
del reduced_df["LEASE NUMBER"] |
||||||
|
del reduced_df["CONTRACT STAT"] |
||||||
|
reduced_df = reduced_df.replace("", np.NaN) |
||||||
|
reduced_df = reduced_df.replace("REVOLV", np.NaN) |
||||||
|
reduced_df = reduced_df.replace("ING ACCOUNT", np.NaN) |
||||||
|
summation = reduced_df.sum(skipna=True, axis=0) |
||||||
|
summation["LESSOR"] = lessor |
||||||
|
summation["CONTRACT COUNT"] = len(reduced_df.index) |
||||||
|
summary_series.append(summation) |
||||||
|
summary_df = pd.concat(summary_series, axis=1).transpose().set_index("LESSOR") |
||||||
|
prt(summary_df) |
||||||
|
with pd.ExcelWriter(save_name) as writer: |
||||||
|
dataframe.to_excel(writer, index=False, sheet_name="data") |
||||||
|
pd.DataFrame(summary_df).to_excel(writer, index=True, sheet_name="Summary") |
||||||
|
return dataframe |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
with open("/config/workspace/LEAF/IL Extract SRC/2022.05.20 Net Investment", errors="replace") as rep_file: |
||||||
|
report = rep_file.read() |
||||||
|
|
||||||
|
prt(net_invest_trial_balance(report, "520_NI_TEST.xlsx")) |
||||||
@ -0,0 +1,92 @@ |
|||||||
|
import os |
||||||
|
import pandas as pd |
||||||
|
from datetime import datetime as dt, timedelta |
||||||
|
import sys, getopt |
||||||
|
import re |
||||||
|
from pathlib import Path |
||||||
|
import time |
||||||
|
from pprint import pprint as prt |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
contract_number_regex = "\d{3}-\d{7}-\d{3}" |
||||||
|
|
||||||
|
def create_line_divider(breakage_list: list): |
||||||
|
""" |
||||||
|
This allows for the creation of a custom data extractor |
||||||
|
Breakage list defines the split points that will be used for the line |
||||||
|
Example |
||||||
|
Given breakage_list [10, 20, 30] |
||||||
|
using slot_num 0 in the resulting extract_line_slot will yield |
||||||
|
characters 0 - 10 from the string. |
||||||
|
Slot 1 would give characters 10 - 20 |
||||||
|
""" |
||||||
|
def extract_line_slot(slot_num : int, line_string: str, debug : bool = False): |
||||||
|
""" |
||||||
|
Pulls data from a line/string using break points defined by the |
||||||
|
parent function. |
||||||
|
ONLY USE THIS FUNCTION THROUGH CREATION USING 'create_line_extractor' |
||||||
|
Will automatically convert numbers to floats |
||||||
|
""" |
||||||
|
assert(slot_num < len(breakage_list)+1) |
||||||
|
low_range = 0 if slot_num == 0 else breakage_list[slot_num-1] |
||||||
|
high_range = len(line_string) if slot_num == len(breakage_list) else breakage_list[slot_num] |
||||||
|
data = line_string[low_range:high_range].strip().replace(",", "") |
||||||
|
try: data = float(data) |
||||||
|
except: pass |
||||||
|
if debug: |
||||||
|
print(f"Slot num: {slot_num} | Low: {low_range} | High: {high_range} | Data: {data}") |
||||||
|
return data |
||||||
|
return extract_line_slot |
||||||
|
|
||||||
|
def renewal_net_invest_trial_balance(report: str, save_name: str): |
||||||
|
lines = report.splitlines() |
||||||
|
data_extractor = create_line_divider([21,29,43,58,71,88,99,113]) |
||||||
|
extracted_data_dict = { |
||||||
|
'CUSTOMER NAME' : [], |
||||||
|
'TYPE' : [], |
||||||
|
'GROSS RENEWAL' : [], |
||||||
|
'REMAINING BAL' : [], |
||||||
|
'FINANCED RES' : [], |
||||||
|
'REMAINING RES' : [], |
||||||
|
'LEASE PYMTS' : [], |
||||||
|
'CONTRACT NUMBER' : [], |
||||||
|
'RENEWAL' : [], |
||||||
|
'PAYMENTS RCVD' : [], |
||||||
|
'CUR RENT RCVB' : [], |
||||||
|
'UNEARNED RIN' : [], |
||||||
|
'SECURITY DEP' : [], |
||||||
|
'NET INVEST' : [], |
||||||
|
'UNEARN INCOME' : [], |
||||||
|
'TOTAL' : [], |
||||||
|
'REM RENT RCVB' : [], |
||||||
|
'UNPAID RES' : [], |
||||||
|
} |
||||||
|
columns = list(extracted_data_dict.keys()) |
||||||
|
line0 = list(zip(columns[0:7], [0,1,2,3,4,5,7])) |
||||||
|
line1 = list(zip(columns[7:16], [i for i in range(0,9)])) |
||||||
|
line2 = list(zip(columns[16:], [3,4])) |
||||||
|
|
||||||
|
for line in enumerate(lines): |
||||||
|
slot1 = data_extractor(0,line[1],False) |
||||||
|
if type(slot1) != str : continue |
||||||
|
if re.search(contract_number_regex, slot1) != None: |
||||||
|
data_section = lines[line[0]-1:line[0]+2] |
||||||
|
|
||||||
|
for ds in enumerate(data_section): |
||||||
|
print(ds[1]) |
||||||
|
if ds[1].find(".") == -1: |
||||||
|
[print(f"\n{d[0]}: {d[1]}") for d in enumerate(data_section)] |
||||||
|
print('\n') |
||||||
|
|
||||||
|
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[0])) for c in line0] |
||||||
|
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[1])) for c in line1] |
||||||
|
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[2])) for c in line2] |
||||||
|
dataframe = pd.DataFrame(extracted_data_dict) |
||||||
|
dataframe.to_excel(save_name, index=False) |
||||||
|
return dataframe |
||||||
|
|
||||||
|
|
||||||
|
with open("/config/workspace/LEAF/IL Extract SRC/2022.05.20 Renewal Net Investment", errors="replace") as rep_file: |
||||||
|
report = rep_file.read() |
||||||
|
|
||||||
|
prt(renewal_net_invest_trial_balance(report, "rn_TESTING.xlsx")) |
||||||
Loading…
Reference in new issue