A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/NI_sum.py

152 lines
5.8 KiB

import os
import pandas as pd
from datetime import datetime as dt, timedelta
import sys, getopt
import re
from pathlib import Path
import time
from pprint import pprint as prt
import numpy as np
contract_number_regex = "\d{3}-\d{7}-\d{3}"
def create_line_divider(breakage_list: list):
"""
This allows for the creation of a custom data extractor
Breakage list defines the split points that will be used for the line
Example
Given breakage_list [10, 20, 30]
using slot_num 0 in the resulting extract_line_slot will yield
characters 0 - 10 from the string.
Slot 1 would give characters 10 - 20
"""
def extract_line_slot(slot_num : int, line_string: str, debug : bool = False):
"""
Pulls data from a line/string using break points defined by the
parent function.
ONLY USE THIS FUNCTION THROUGH CREATION USING 'create_line_extractor'
Will automatically convert numbers to floats
"""
assert(slot_num < len(breakage_list)+1)
low_range = 0 if slot_num == 0 else breakage_list[slot_num-1]
high_range = len(line_string) if slot_num == len(breakage_list) else breakage_list[slot_num]
data = line_string[low_range:high_range].strip().replace(",", "")
try: data = float(data)
except: pass
if debug:
print(f"Slot num: {slot_num} | Low: {low_range} | High: {high_range} | Data: {data}")
return data
return extract_line_slot
def net_invest_trial_balance(report: str, save_name: str):
lines = report.splitlines()
extracted_data_dict = {
'CUSTOMER NAME' : [],
'CURR INT RCVB' : [],
'UNEARNED BLENDED' : [],
'BLEND NET INV' : [],
'LEASE NUMBER' : [],
'GROSS CONTRACT' : [],
'CURR RENT RCVB' : [],
'UNEARN FIN' : [],
'END DEPOSIT' : [],
'SEC DEPOSIT' : [],
'LEASE PYMTS' : [],
'TOTAL' : [],
'CONTRACT STAT' : [],
'PAYMENTS RCVD' : [],
'REM RENT RCVB' : [],
'UNEARN RESID' : [],
'PROV LOSS' : [],
'NET RESERVE' : [],
'UNEARN INC' : [],
'BAL REMAINING' : [],
'RESIDUAL' : [],
'UNPAID INT' : [],
'NET INV' : [],
'UNEARNED IDC' : [],
"LESSOR": []
}
lessors = []
columns = list(extracted_data_dict.keys())
line0 = list(zip(columns[0:4], [0,3,4,5]))
line1 = list(zip(columns[4:12], [i for i in range(0,8)]))
line2 = list(zip(columns[12:19], [i for i in range(0,7)]))
line3 = list(zip(columns[19:-1], [i for i in range(1,6)]))
for l in [line0,line1,line2,line3]:
print(f"\n{l}")
data_extractor = create_line_divider([18,32,50,66,84,100,117])
for line in enumerate(lines):
slot1 = data_extractor(0,line[1],False)
if type(slot1) != str : continue
if re.search(contract_number_regex, slot1) != None:
data_section = lines[line[0]-1:line[0]+3]
if data_section[0].find(".") == -1:
data_section[0] = lines[line[0]-2]
for ds in enumerate(data_section):
if ds[1].find(".") == -1:
if ds[0] < len(data_section) -1:
for i in range(ds[0], len(data_section)-1):
#print(f"{i}: { data_section[i]}")
data_section[i] = data_section[i+1]
#print(f"DELTA| {i}: { data_section[i]}")
data_section[3] = lines[line[0]+3]
else:
data_section[3] = lines[line[0]+3]
# [print(f"\n{d[0]}: {d[1]}") for d in enumerate(data_section)]
# print('\n')
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[0], False)) for c in line0]
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[1], False)) for c in line1]
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[2], False)) for c in line2]
[extracted_data_dict[c[0]].append(data_extractor(c[1], data_section[3], False)) for c in line3]
extracted_data_dict["LESSOR"].append(extracted_data_dict["LEASE NUMBER"][-1][0:3])
if extracted_data_dict["LESSOR"][-1] not in lessors:
print(extracted_data_dict["LESSOR"][-1])
lessors.append(extracted_data_dict["LESSOR"][-1])
print(lessors)
for c in columns:
print(f"C: {c} | {len(extracted_data_dict[c])}")
print(lessors)
dataframe = pd.DataFrame(extracted_data_dict)
summary_series = []
for lessor in lessors:
reduced_df = dataframe.loc[dataframe["LESSOR"] == lessor]
del reduced_df["CUSTOMER NAME"]
del reduced_df["LEASE NUMBER"]
del reduced_df["CONTRACT STAT"]
reduced_df = reduced_df.replace("", np.NaN)
reduced_df = reduced_df.replace("REVOLV", np.NaN)
reduced_df = reduced_df.replace("ING ACCOUNT", np.NaN)
summation = reduced_df.sum(skipna=True, axis=0)
summation["LESSOR"] = lessor
summation["CONTRACT COUNT"] = len(reduced_df.index)
summary_series.append(summation)
summary_df = pd.concat(summary_series, axis=1).transpose().set_index("LESSOR")
prt(summary_df)
with pd.ExcelWriter(save_name) as writer:
dataframe.to_excel(writer, index=False, sheet_name="data")
pd.DataFrame(summary_df).to_excel(writer, index=True, sheet_name="Summary")
return dataframe
with open("/config/workspace/LEAF/IL Extract SRC/2022.05.20 Net Investment", errors="replace") as rep_file:
report = rep_file.read()
prt(net_invest_trial_balance(report, "520_NI_TEST.xlsx"))