Compare commits
6 Commits
| Author | SHA1 | Date |
|---|---|---|
|
|
231f5ed4ce | 3 years ago |
|
|
fa7f1516c8 | 3 years ago |
|
|
f6245a3413 | 3 years ago |
|
|
9ad5e9180c | 3 years ago |
|
|
7ad4f76943 | 3 years ago |
|
|
6eb57d7978 | 3 years ago |
@ -1,52 +0,0 @@ |
|||||||
write_dir = "Work" |
|
||||||
DocNumFilter = [ |
|
||||||
"p(oin)?ts", |
|
||||||
"pool", |
|
||||||
"promo", |
|
||||||
"o(ver)?f(und)?", |
|
||||||
"m(ar)?ke?t", |
|
||||||
"title", |
|
||||||
"adj", |
|
||||||
"reg free", |
|
||||||
"cma" |
|
||||||
] |
|
||||||
[ExcelColumns] |
|
||||||
|
|
||||||
[ExcelColumns.OB] |
|
||||||
contract_number = "Contract" # 3070508-007 |
|
||||||
onhold_amount = "CurrentOnHold" |
|
||||||
install_date = "InstallDate" |
|
||||||
|
|
||||||
[ExcelColumns.GP] |
|
||||||
contract_number = "Transaction Description" # 1234-56789 |
|
||||||
onhold_amount = "Current Trx Amount" |
|
||||||
doc_num = "Document Number" # 1-316141 HOLD |
|
||||||
pur_order = "Purchase Order Number" # ABC123 |
|
||||||
doc_type = "Document Type" # Invoice or Credit Memo |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[logger] |
|
||||||
version = 1 |
|
||||||
|
|
||||||
disable_existing_loggers = false |
|
||||||
|
|
||||||
[logger.formatters.custom] |
|
||||||
format = "'%(asctime)s - %(module)s - %(levelname)s - %(message)s'" |
|
||||||
|
|
||||||
[logger.handlers.console] |
|
||||||
class = "logging.StreamHandler" |
|
||||||
level = "DEBUG" |
|
||||||
formatter = "custom" |
|
||||||
stream = "ext://sys.stdout" |
|
||||||
|
|
||||||
[logger.handlers.file] |
|
||||||
class = "logging.FileHandler" |
|
||||||
level = "DEBUG" |
|
||||||
formatter = "custom" |
|
||||||
filename = "on_hold.log" |
|
||||||
|
|
||||||
[logger.root] |
|
||||||
level = "DEBUG" |
|
||||||
handlers = ["console", "file"] |
|
||||||
@ -1,251 +0,0 @@ |
|||||||
import pandas as pd |
|
||||||
from pandas import DataFrame |
|
||||||
from datetime import datetime as dt |
|
||||||
import datetime |
|
||||||
import re |
|
||||||
from typing import Literal |
|
||||||
import logging |
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__) |
|
||||||
|
|
||||||
|
|
||||||
def get_overdue(onbase_df: DataFrame, onbase_excel_config) -> DataFrame: |
|
||||||
""" |
|
||||||
Given a DataFrame containing OnBase installation data and a dictionary containing the OnBase Excel configuration, |
|
||||||
this function returns a DataFrame containing the rows from `onbase_df` that have an installation date that is before |
|
||||||
the current date. |
|
||||||
|
|
||||||
Args: |
|
||||||
onbase_df (pd.DataFrame): A pandas DataFrame containing OnBase installation data. |
|
||||||
onbase_excel_config (dict): A dictionary containing the OnBase Excel configuration. |
|
||||||
|
|
||||||
Returns: |
|
||||||
pd.DataFrame: A pandas DataFrame containing the rows from `onbase_df` that have an installation date that is before |
|
||||||
the current date. |
|
||||||
""" |
|
||||||
id_col = onbase_excel_config["install_date"] |
|
||||||
onbase_df[id_col] = pd.to_datetime(onbase_df[id_col]) |
|
||||||
onbase_df[id_col].fillna(pd.NaT, inplace=True) |
|
||||||
return onbase_df[onbase_df[id_col].dt.date < datetime.date.today()] |
|
||||||
|
|
||||||
|
|
||||||
def filter_gp(gp_dataframe: pd.DataFrame, full_config: dict) -> pd.DataFrame: |
|
||||||
""" |
|
||||||
Given a pandas DataFrame containing GP data and a dictionary containing the GP configuration, this function |
|
||||||
filters out rows from the DataFrame that are not needed for further analysis based on certain criteria. |
|
||||||
|
|
||||||
Args: |
|
||||||
gp_dataframe (pd.DataFrame): A pandas DataFrame containing GP data. |
|
||||||
gp_config (dict): A dictionary containing the GP configuration. |
|
||||||
|
|
||||||
Returns: |
|
||||||
pd.DataFrame: A pandas DataFrame containing the filtered GP data. |
|
||||||
""" |
|
||||||
|
|
||||||
# Excludes anything that contains cma with a space or digit following it |
|
||||||
# CMA23532 would be excluded but 'John Locman' would be allowed |
|
||||||
GOOD_PO_NUM = re.compile(r"^(?!.*cma(\s|\d)).*$", re.IGNORECASE) |
|
||||||
|
|
||||||
gp_config: dict = full_config["ExcelColumns"]["GP"] |
|
||||||
doc_num_regexes: list[str] = full_config["DocNumFilter"] |
|
||||||
|
|
||||||
bad_doc_num = '' |
|
||||||
rx : str |
|
||||||
for rx in doc_num_regexes: |
|
||||||
bad_doc_num += f"({rx})|" |
|
||||||
bad_doc_num = re.compile(bad_doc_num[:-1], re.IGNORECASE) |
|
||||||
logger.debug(f"Doc # filter: {bad_doc_num}") |
|
||||||
# Create a filter/mask to use on the data |
|
||||||
mask = ( |
|
||||||
(gp_dataframe[gp_config['doc_type']] == "Invoice") & |
|
||||||
(gp_dataframe[gp_config['pur_order']].str.contains(GOOD_PO_NUM)) |
|
||||||
) |
|
||||||
|
|
||||||
# Get the rows to drop based on the filter/mask |
|
||||||
rows_to_drop = gp_dataframe[~mask].index |
|
||||||
|
|
||||||
# Drop the rows and return the filtered DataFrame |
|
||||||
filtered_df = gp_dataframe.drop(rows_to_drop, inplace=False) |
|
||||||
|
|
||||||
mask = filtered_df[gp_config['doc_num']].str.contains(bad_doc_num) |
|
||||||
rows_to_drop = filtered_df[mask].index |
|
||||||
|
|
||||||
return filtered_df.drop(rows_to_drop, inplace=False) |
|
||||||
|
|
||||||
|
|
||||||
def create_transaction_df(dataframe: pd.DataFrame, source: Literal["GP", "OB"], excelConfig: dict): |
|
||||||
""" |
|
||||||
Given a pandas DataFrame containing transaction data, the source of the data ("GP" or "OB"), and a dictionary |
|
||||||
containing the Excel configuration, this function creates a new DataFrame with columns for the contract number, |
|
||||||
the amount on hold, a unique transaction ID, and the source of the data. |
|
||||||
|
|
||||||
Args: |
|
||||||
dataframe (pd.DataFrame): A pandas DataFrame containing transaction data. |
|
||||||
source (Literal["GP", "OB"]): The source of the data ("GP" or "OB"). |
|
||||||
excelConfig (dict): A dictionary containing the Excel configuration. |
|
||||||
|
|
||||||
Returns: |
|
||||||
pd.DataFrame: A pandas DataFrame containing the contract number, amount on hold, transaction ID, and data source |
|
||||||
for each transaction in the original DataFrame. |
|
||||||
""" |
|
||||||
column_config: dict = excelConfig[source] |
|
||||||
logger.debug(f"column_config: {column_config}") |
|
||||||
# Create a new DataFrame with the contract number and on-hold amount columns |
|
||||||
transactions = dataframe[[column_config["contract_number"], column_config["onhold_amount"]]].copy() |
|
||||||
|
|
||||||
# Rename the columns to standardize the column names |
|
||||||
transactions.rename(columns={ |
|
||||||
column_config["contract_number"]: "contract_number", |
|
||||||
column_config["onhold_amount"]: "onhold_amount", |
|
||||||
}, inplace=True) |
|
||||||
|
|
||||||
# Convert the on-hold amount column to float format and round to two decimal places |
|
||||||
transactions["onhold_amount"] = transactions["onhold_amount"].astype(float).round(2) |
|
||||||
|
|
||||||
# Use regex to extract the contract number from the column values and create a new column with the standardized format |
|
||||||
CN_REGEX = re.compile(r"\d{7}(-\d{3})?") |
|
||||||
transactions["contract_number"] = transactions["contract_number"].apply( |
|
||||||
lambda cn: str(cn) if not re.search(CN_REGEX, str(cn)) |
|
||||||
else re.search(CN_REGEX, str(cn)).group(0) |
|
||||||
) |
|
||||||
|
|
||||||
# Create a new column with a unique transaction ID |
|
||||||
transactions["ID"] = transactions["contract_number"] +'_'+\ |
|
||||||
transactions["onhold_amount"].astype(str) |
|
||||||
|
|
||||||
# Create a new column with the data source |
|
||||||
transactions["Source"] = source |
|
||||||
|
|
||||||
# Return the new DataFrame with the contract number, on-hold amount, transaction ID, and data source columns |
|
||||||
return transactions |
|
||||||
|
|
||||||
|
|
||||||
def get_no_match(obt_df: pd.DataFrame, gpt_df: pd.DataFrame): |
|
||||||
""" |
|
||||||
Given two pandas DataFrames containing transaction data from OBT and GPT, respectively, this function returns a new |
|
||||||
DataFrame containing only the transactions that do not have a match in both the OBT and GPT DataFrames. |
|
||||||
|
|
||||||
Args: |
|
||||||
obt_df (pd.DataFrame): A pandas DataFrame containing transaction data from OBT. |
|
||||||
gpt_df (pd.DataFrame): A pandas DataFrame containing transaction data from GPT. |
|
||||||
|
|
||||||
Returns: |
|
||||||
pd.DataFrame: A pandas DataFrame containing the transactions that do not have a match in both the OBT and GPT |
|
||||||
DataFrames. |
|
||||||
""" |
|
||||||
# Merge the two DataFrames using the contract number as the join key |
|
||||||
merged_df = pd.merge( |
|
||||||
obt_df, gpt_df, |
|
||||||
how="outer", |
|
||||||
on=["contract_number"], |
|
||||||
suffixes=("_ob", "_gp") |
|
||||||
) |
|
||||||
|
|
||||||
# Filter the merged DataFrame to include only the transactions that do not have a match in both OBT and GPT |
|
||||||
no_match = merged_df.loc[ |
|
||||||
(merged_df["Source_ob"].isna()) | |
|
||||||
(merged_df["Source_gp"].isna()) |
|
||||||
] |
|
||||||
|
|
||||||
# Fill in missing values and drop unnecessary columns |
|
||||||
no_match["Source"] = no_match["Source_ob"].fillna("GP") |
|
||||||
no_match["onhold_amount"] = no_match["onhold_amount_ob"].fillna(no_match["onhold_amount_gp"]) |
|
||||||
no_match.drop(columns=[ |
|
||||||
"ID_ob", "ID_gp", |
|
||||||
"onhold_amount_ob", "onhold_amount_gp", |
|
||||||
"Source_ob", "Source_gp" |
|
||||||
], |
|
||||||
inplace=True) |
|
||||||
|
|
||||||
# Reorder and return the new DataFrame with the source, contract number, and on-hold amount columns |
|
||||||
no_match = no_match[ |
|
||||||
[ "Source", "contract_number", "onhold_amount"] |
|
||||||
] |
|
||||||
|
|
||||||
return no_match |
|
||||||
|
|
||||||
|
|
||||||
def get_not_full_match(obt_df: pd.DataFrame, gpt_df: pd.DataFrame): |
|
||||||
""" |
|
||||||
Given two pandas DataFrames containing transaction data from OBT and GPT, respectively, this function returns two new |
|
||||||
DataFrames. The first DataFrame contains the transactions that have a full match on both the OBT and GPT DataFrames, |
|
||||||
and the second DataFrame contains the transactions that do not have a full match. |
|
||||||
|
|
||||||
Args: |
|
||||||
obt_df (pd.DataFrame): A pandas DataFrame containing transaction data from OBT. |
|
||||||
gpt_df (pd.DataFrame): A pandas DataFrame containing transaction data from GPT. |
|
||||||
|
|
||||||
Returns: |
|
||||||
tuple(pd.DataFrame, pd.DataFrame): A tuple of two DataFrames. The first DataFrame contains the transactions that |
|
||||||
have a full match on both the OBT and GPT DataFrames, and the second DataFrame contains the transactions that do |
|
||||||
not have a full match. |
|
||||||
""" |
|
||||||
# Combine the two DataFrames using an outer join on the contract number and on-hold amount |
|
||||||
merged_df = pd.merge( |
|
||||||
obt_df, gpt_df, |
|
||||||
how="outer", |
|
||||||
on=["ID", "contract_number", "onhold_amount"], |
|
||||||
suffixes=("_ob", "_gp") |
|
||||||
) |
|
||||||
|
|
||||||
# Filter the merged DataFrame to include only the transactions that have a full match in both OBT and GPT |
|
||||||
full_matched = merged_df.dropna(subset=["Source_ob", "Source_gp"]) |
|
||||||
full_matched.drop(columns=["Source_ob", "Source_gp"], inplace=True) |
|
||||||
|
|
||||||
# Create a boolean mask for the rows to drop in full_matched |
|
||||||
mask = merged_df["ID"].isin(full_matched["ID"]) |
|
||||||
# Use the mask to remove the selected rows and create a new DataFrame for not full match |
|
||||||
not_full_match = merged_df[~mask] |
|
||||||
# This includes items that DO match contracts, but not amounts |
|
||||||
# It can have multiple items from one source with the same contract number |
|
||||||
|
|
||||||
# Create a new column with the data source, using OBT as the default and GPT as backup if missing |
|
||||||
not_full_match["Source"] = not_full_match["Source_ob"].fillna(not_full_match["Source_gp"]) |
|
||||||
|
|
||||||
# Drop the redundant Source columns |
|
||||||
not_full_match.drop(columns=["Source_ob", "Source_gp"], inplace=True) |
|
||||||
|
|
||||||
# Reorder and return the new DataFrame with the source, contract number, and on-hold amount columns |
|
||||||
not_full_match = not_full_match[ |
|
||||||
[ "Source", "contract_number", "onhold_amount"] |
|
||||||
] |
|
||||||
|
|
||||||
# Return the two DataFrames |
|
||||||
return full_matched, not_full_match |
|
||||||
|
|
||||||
|
|
||||||
def get_contract_match(not_full_match: pd.DataFrame) -> pd.DataFrame: |
|
||||||
""" |
|
||||||
Given a pandas DataFrame containing transactions that do not have a full match between OBT and GPT, this function |
|
||||||
returns a new DataFrame containing only the transactions that have a matching contract number in both OBT and GPT. |
|
||||||
|
|
||||||
Args: |
|
||||||
not_full_match (pd.DataFrame): A pandas DataFrame containing transactions that do not have a full match between |
|
||||||
OBT and GPT. |
|
||||||
|
|
||||||
Returns: |
|
||||||
pd.DataFrame: A pandas DataFrame containing only the transactions that have a matching contract number in both |
|
||||||
OBT and GPT. |
|
||||||
""" |
|
||||||
# Filter the not_full_match DataFrame by source |
|
||||||
ob_df = not_full_match[not_full_match["Source"] == "OB"] |
|
||||||
gp_df = not_full_match[not_full_match["Source"] == "GP"] |
|
||||||
|
|
||||||
# Merge the two filtered DataFrames on the contract number |
|
||||||
contract_match = pd.merge( |
|
||||||
ob_df, gp_df, |
|
||||||
how="inner", |
|
||||||
on=["contract_number"], |
|
||||||
suffixes=("_ob", "_gp") |
|
||||||
) |
|
||||||
|
|
||||||
# Fill in missing values in the Source column and drop the redundant columns |
|
||||||
contract_match.drop(columns=["Source_ob", "Source_gp"], inplace=True) |
|
||||||
|
|
||||||
# Reorder and return the new DataFrame with the source, contract number, and on-hold amount columns |
|
||||||
contract_match = contract_match[ |
|
||||||
[ "contract_number", "onhold_amount_ob", "onhold_amount_gp"] |
|
||||||
] |
|
||||||
|
|
||||||
return contract_match |
|
||||||
@ -1,190 +0,0 @@ |
|||||||
import pandas as pd |
|
||||||
from pandas import DataFrame, Series |
|
||||||
import re |
|
||||||
from re import Pattern |
|
||||||
import os |
|
||||||
from os.path import basename |
|
||||||
import glob |
|
||||||
import logging |
|
||||||
from pathlib import Path |
|
||||||
from tomllib import load |
|
||||||
import logging.config |
|
||||||
from datetime import datetime as dt |
|
||||||
|
|
||||||
""" |
|
||||||
[ ] Pull in past reconciliations to check against |
|
||||||
[ ] Record reconciled transaction (connect with VBA) |
|
||||||
[ ] Check GP against the database |
|
||||||
[ ] Check OB against the database |
|
||||||
""" |
|
||||||
|
|
||||||
# Custom module for reconciliation |
|
||||||
from rec_lib import get_contract_match, get_no_match, \ |
|
||||||
get_not_full_match, get_overdue, filter_gp, create_transaction_df |
|
||||||
|
|
||||||
def setup_logging(): |
|
||||||
""" |
|
||||||
Sets up logging configuration from the TOML file. If the logging configuration fails to be loaded from the file, |
|
||||||
a default logging configuration is used instead. |
|
||||||
|
|
||||||
Returns: |
|
||||||
logging.Logger: The logger instance. |
|
||||||
""" |
|
||||||
with open("config.toml", "rb") as f: |
|
||||||
config_dict: dict = load(f) |
|
||||||
try: |
|
||||||
# Try to load logging configuration from the TOML file |
|
||||||
logging.config.dictConfig(config_dict["logger"]) |
|
||||||
except Exception as e: |
|
||||||
# If the logging configuration fails, use a default configuration and log the error |
|
||||||
logger = logging.getLogger() |
|
||||||
logger.setLevel(logging.DEBUG) |
|
||||||
logger.warning("Failed setting up logger!") |
|
||||||
logger.exception(e) |
|
||||||
logger.warning(f"Config:\n{config_dict}") |
|
||||||
return logger |
|
||||||
|
|
||||||
|
|
||||||
setup_logging() |
|
||||||
logger = logging.getLogger(__name__) |
|
||||||
logger.info(f"Logger started with level: {logger.level}") |
|
||||||
|
|
||||||
def find_most_recent_file(folder_path: Path, file_pattern: Pattern) -> str: |
|
||||||
""" |
|
||||||
Given a folder path and a regular expression pattern, this function returns the path of the most recently modified |
|
||||||
file in the folder that matches the pattern. |
|
||||||
|
|
||||||
Args: |
|
||||||
folder_path (Path): A pathlib.Path object representing the folder to search. |
|
||||||
file_pattern (Pattern): A regular expression pattern used to filter the files in the folder. |
|
||||||
|
|
||||||
Returns: |
|
||||||
str: The path of the most recently modified file in the folder that matches the pattern. |
|
||||||
""" |
|
||||||
# Find all files in the folder that match the pattern |
|
||||||
files = glob.glob(f"{folder_path}/*") |
|
||||||
logger.debug(f"files: {files}") |
|
||||||
|
|
||||||
# Get the modification time of each file and filter to only those that match the pattern |
|
||||||
file_times = [(os.path.getmtime(path), path) for path in files if re.match(file_pattern, basename(path))] |
|
||||||
|
|
||||||
# Sort the files by modification time (most recent first) |
|
||||||
file_times.sort(reverse=True) |
|
||||||
logger.debug(f"file times: {file_times}") |
|
||||||
|
|
||||||
# Return the path of the most recent file |
|
||||||
return file_times[0][1] |
|
||||||
|
|
||||||
|
|
||||||
def check_sheet(df_cols: list[str], excel_col_config: dict) -> bool: |
|
||||||
""" |
|
||||||
Given a list of column names and a dictionary of column name configurations, this function checks if the required |
|
||||||
columns are present in the list of column names. |
|
||||||
|
|
||||||
Args: |
|
||||||
df_cols (list[str]): A list of column names. |
|
||||||
excel_col_config (dict): A dictionary of column name configurations. |
|
||||||
|
|
||||||
Returns: |
|
||||||
bool: True if all of the required columns are present in the list of column names, False otherwise. |
|
||||||
""" |
|
||||||
# Get the list of required columns from the column configuration dictionary |
|
||||||
required_cols: list[str] = list(excel_col_config.values()) |
|
||||||
# Check if all of the required columns are present in the list of column names |
|
||||||
return all([col in df_cols for col in required_cols]) |
|
||||||
|
|
||||||
|
|
||||||
def get_dataframes(work_dir: str, excelConfig: dict) -> tuple[pd.DataFrame|None, pd.DataFrame|None]: |
|
||||||
""" |
|
||||||
Given a dictionary of Excel configuration options, this function searches for the most recently modified GP and OB |
|
||||||
Excel files in a "Work" folder and returns their corresponding dataframes. |
|
||||||
|
|
||||||
Args: |
|
||||||
excelConfig (dict): A dictionary containing configuration options for the GP and OB Excel files. |
|
||||||
|
|
||||||
Returns: |
|
||||||
tuple[pd.DataFrame|None, pd.DataFrame|None]: A tuple containing the OB and GP dataframes, respectively. |
|
||||||
""" |
|
||||||
|
|
||||||
# Define regular expression patterns to match the GP and OB Excel files |
|
||||||
gp_regex: Pattern = re.compile(".*gp.*\.xlsx$", re.IGNORECASE) |
|
||||||
ob_regex: Pattern = re.compile(".*ob.*\.xlsx$", re.IGNORECASE) |
|
||||||
|
|
||||||
# Find the paths of the most recently modified GP and OB Excel files |
|
||||||
gp_file_path = find_most_recent_file(work_dir, gp_regex) |
|
||||||
logger.debug(f"gp_file_path: {gp_file_path}") |
|
||||||
ob_file_path = find_most_recent_file(work_dir, ob_regex) |
|
||||||
logger.debug(f"gp_file_path: {ob_file_path}") |
|
||||||
|
|
||||||
# Read the GP and OB Excel files into dataframes and check that each dataframe has the required columns |
|
||||||
gp_xl = pd.ExcelFile(gp_file_path) |
|
||||||
gp_config = excelConfig["GP"] |
|
||||||
gp_sheets = gp_xl.sheet_names |
|
||||||
gp_dfs = pd.read_excel(gp_xl, sheet_name=gp_sheets) |
|
||||||
for sheet in gp_dfs: |
|
||||||
if check_sheet(gp_dfs[sheet].columns, gp_config): |
|
||||||
gp_df = gp_dfs[sheet] |
|
||||||
break |
|
||||||
|
|
||||||
ob_xl = pd.ExcelFile(ob_file_path) |
|
||||||
ob_config = excelConfig["OB"] |
|
||||||
ob_sheets = ob_xl.sheet_names |
|
||||||
ob_dfs = pd.read_excel(ob_xl, sheet_name=ob_sheets) |
|
||||||
for sheet in ob_dfs: |
|
||||||
if check_sheet(ob_dfs[sheet].columns, ob_config): |
|
||||||
ob_df = ob_dfs[sheet] |
|
||||||
break |
|
||||||
|
|
||||||
return ob_df, gp_df |
|
||||||
|
|
||||||
|
|
||||||
def main() -> int: |
|
||||||
""" |
|
||||||
This is the main function for the script. It reads configuration options from a TOML file, reads in the GP and OB |
|
||||||
Excel files, performs data reconciliation and analysis, and writes the results to a new Excel file. |
|
||||||
|
|
||||||
Returns: |
|
||||||
int: 0 if the script executes successfully. |
|
||||||
""" |
|
||||||
# Read the configuration options from a TOML file |
|
||||||
with open("config.toml", "rb") as f: |
|
||||||
config_dict: dict = load(f) |
|
||||||
logger.debug(f"Config: {config_dict}") |
|
||||||
|
|
||||||
excelConfig: dict = config_dict["ExcelColumns"] |
|
||||||
|
|
||||||
# Get the GP and OB dataframes from the Excel files |
|
||||||
ob_df, gp_df = get_dataframes(config_dict["write_dir"] ,excelConfig) |
|
||||||
assert not ob_df.empty, "OB Data empty!" |
|
||||||
assert not gp_df.empty, "GP Data empty!" |
|
||||||
|
|
||||||
# Filter the GP dataframe to include only relevant transactions |
|
||||||
fgp_df: DataFrame = filter_gp(gp_df, config_dict) |
|
||||||
# Get the overdue transactions from the OB dataframe |
|
||||||
overdue: DataFrame = get_overdue(ob_df, excelConfig["OB"]) |
|
||||||
|
|
||||||
# Create transaction dataframes for the GP and OB dataframes |
|
||||||
ob_transactions: DataFrame = create_transaction_df(ob_df, 'OB', excelConfig) |
|
||||||
gp_transactions: DataFrame = create_transaction_df(fgp_df, 'GP', excelConfig) |
|
||||||
|
|
||||||
# Get the transactions that do not have matches in both the GP and OB dataframes |
|
||||||
no_match: DataFrame = get_no_match(ob_transactions, gp_transactions) |
|
||||||
|
|
||||||
# Get the transactions that have matches in both the GP and OB dataframes but have amount mismatches |
|
||||||
full_match, not_full_match = get_not_full_match(ob_transactions, gp_transactions) |
|
||||||
only_contracts_match: DataFrame = get_contract_match(not_full_match) |
|
||||||
|
|
||||||
# Write the results to a new Excel file |
|
||||||
with pd.ExcelWriter(f"{config_dict['write_dir']}/Reconciled Holds [{dt.now().strftime('%m-%d-%Y')}].xlsx", mode='w') as writer: |
|
||||||
full_match.to_excel(writer,sheet_name="FULL", index=False) |
|
||||||
no_match.to_excel(writer, sheet_name="No Match", index=False) |
|
||||||
only_contracts_match.to_excel(writer, sheet_name="Amount Mismatch", index=False) |
|
||||||
overdue.to_excel(writer, sheet_name="Overdue", index=False) |
|
||||||
|
|
||||||
return 0 |
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__": |
|
||||||
print("Starting") |
|
||||||
main() |
|
||||||
print("Completed") |
|
||||||
@ -0,0 +1,6 @@ |
|||||||
|
from typing import TypeVar, Literal |
||||||
|
from enum import Enum |
||||||
|
|
||||||
|
class ReportSource(Enum): |
||||||
|
OB = "OB" |
||||||
|
GP = "GP" |
||||||
@ -0,0 +1,198 @@ |
|||||||
|
from tomllib import load as t_load |
||||||
|
from json import load as j_load |
||||||
|
from pathlib import Path |
||||||
|
from dataclasses import dataclass |
||||||
|
from typing import TypedDict |
||||||
|
from re import Pattern, compile |
||||||
|
|
||||||
|
from src import ReportSource |
||||||
|
|
||||||
|
|
||||||
|
Regex = str | Pattern |
||||||
|
|
||||||
|
|
||||||
|
class ReportConfigError(Exception): |
||||||
|
""" |
||||||
|
Exception stemming from a report configuration |
||||||
|
""" |
||||||
|
pass |
||||||
|
|
||||||
|
|
||||||
|
class SharedColumn(TypedDict, total=True): |
||||||
|
""" |
||||||
|
Excel/Dataframe column that is shared between both GP & OB |
||||||
|
""" |
||||||
|
standard: str |
||||||
|
gp: str |
||||||
|
ob: str |
||||||
|
|
||||||
|
|
||||||
|
class PathsConfig: |
||||||
|
""" |
||||||
|
Configuration holding the paths to: |
||||||
|
- input_directory: Where to search for new report files |
||||||
|
- gp/ob_glob: regex used to find new OB & GP files in the report location |
||||||
|
- db_path: path to an SQLite database if any |
||||||
|
""" |
||||||
|
|
||||||
|
def __init__(self, in_dir: str, out_dir: str, |
||||||
|
input_regex_dict: dict[str:str] , db_path: str = None) -> None: |
||||||
|
|
||||||
|
self.input_directory: Path = Path(in_dir) |
||||||
|
self.output_directory: Path = Path(out_dir) |
||||||
|
|
||||||
|
self.gp_glob: str = r"*.xlsx" |
||||||
|
self.ob_glob: str = r"*.xlsx" |
||||||
|
|
||||||
|
if db_path is not None: |
||||||
|
self.db_path: Path = Path(db_path) |
||||||
|
|
||||||
|
try: |
||||||
|
self.gp_glob: str = input_regex_dict["GP"] |
||||||
|
self.ob_glob: str = input_regex_dict["OB"] |
||||||
|
except KeyError: |
||||||
|
# Defaulting to newest of any xlsx file! |
||||||
|
# TODO investigate warning |
||||||
|
pass # will remain as *.xlsx |
||||||
|
|
||||||
|
def get_most_recent(self, report_type: ReportSource = None) -> Path|None| tuple[Path|None, Path|None]: |
||||||
|
""" |
||||||
|
Gets the most recent hold reports for OnBase and Great Plains. |
||||||
|
If no report type is specified both OnBase & GreatPlains are returned. |
||||||
|
|
||||||
|
If no matching reports are found, None will be returned |
||||||
|
""" |
||||||
|
|
||||||
|
report_files = [] |
||||||
|
report_types = [ReportSource.OB, ReportSource.GP] if report_type is None else [report_type] |
||||||
|
rt: ReportSource |
||||||
|
for rt in report_types: |
||||||
|
match rt: |
||||||
|
case rt.OB: |
||||||
|
file_glob: str = self.ob_glob |
||||||
|
case rt.GP: |
||||||
|
file_glob: str = self.gp_glob |
||||||
|
case _: |
||||||
|
raise NotImplementedError(\ |
||||||
|
f"No regex pattern for report type: {rt}" |
||||||
|
) |
||||||
|
|
||||||
|
files = self.input_directory.glob(file_glob) |
||||||
|
|
||||||
|
# Find the most recently created file |
||||||
|
most_recent_file = None |
||||||
|
most_recent_creation_time = None |
||||||
|
|
||||||
|
file: Path |
||||||
|
for file in files: |
||||||
|
creation_time = file.stat().st_ctime |
||||||
|
if most_recent_creation_time is None or creation_time > most_recent_creation_time: |
||||||
|
most_recent_file = file |
||||||
|
most_recent_creation_time = creation_time |
||||||
|
report_files.append(most_recent_file) |
||||||
|
|
||||||
|
if len(report_files) > 1: |
||||||
|
return report_files |
||||||
|
|
||||||
|
return report_files[0] |
||||||
|
|
||||||
|
def has_database(self) -> tuple[bool, bool]: |
||||||
|
""" |
||||||
|
Returns whether the config has a SQlite database path and |
||||||
|
whether that path exists |
||||||
|
""" |
||||||
|
has_db: bool = isinstance(self.db_path, Path) |
||||||
|
exists: bool = self.db_path.exists() if has_db else False |
||||||
|
return has_db, exists |
||||||
|
|
||||||
|
|
||||||
|
@dataclass |
||||||
|
class ReportConfig: |
||||||
|
""" |
||||||
|
Allows easy interaction with program configuration. |
||||||
|
- Paths to files, db |
||||||
|
- Report/Excel column naming |
||||||
|
- Regexes |
||||||
|
""" |
||||||
|
|
||||||
|
# Paths to work with |
||||||
|
# - input/output |
||||||
|
# - input discovery regexes |
||||||
|
# - SQLite database path |
||||||
|
paths: PathsConfig |
||||||
|
|
||||||
|
use_mssql: bool |
||||||
|
|
||||||
|
# Work columns are included in finsished columns |
||||||
|
work_columns: list[str] |
||||||
|
finished_columns: list[str] |
||||||
|
|
||||||
|
filters: dict[str:list[Pattern]|Pattern] |
||||||
|
|
||||||
|
# Columns featured in both reports |
||||||
|
# unified col name -> origin report -> origin col name |
||||||
|
# e.g. contract_number -> GP -> Transaction Description |
||||||
|
shared_columns: list[SharedColumn] |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def from_file(config_path: str|Path) -> 'ReportConfig': |
||||||
|
|
||||||
|
config_path = Path(config_path) if isinstance(config_path, str) else config_path |
||||||
|
|
||||||
|
with open(config_path, "rb") as config_file: |
||||||
|
match config_path.suffix: |
||||||
|
case ".toml": |
||||||
|
c_dict: dict = t_load(config_file) |
||||||
|
case ".json": |
||||||
|
c_dict: dict= j_load(config_file) |
||||||
|
case _: |
||||||
|
raise NotImplementedError(f"Only json and toml configs are supported not: {config_path.suffix}") |
||||||
|
|
||||||
|
try: |
||||||
|
|
||||||
|
path_config: PathsConfig = PathsConfig( |
||||||
|
in_dir = c_dict["input_directory"], |
||||||
|
out_dir= c_dict["output_directory"], |
||||||
|
input_regex_dict= c_dict["input_glob_pattern"], |
||||||
|
db_path= c_dict["database_path"] |
||||||
|
) |
||||||
|
|
||||||
|
use_mssql = False #TODO no yet implemented |
||||||
|
|
||||||
|
work_columns = c_dict["work_columns"] |
||||||
|
finished_column = c_dict["finished_column"] |
||||||
|
|
||||||
|
# Create filter dict with compiled regex |
||||||
|
filters_dict : dict = c_dict["filters"] |
||||||
|
filters: dict[str:list[Pattern]|Pattern] = {} |
||||||
|
k: str |
||||||
|
v: Regex|list[Regex] |
||||||
|
for k, v in filters_dict.items(): |
||||||
|
|
||||||
|
if not isinstance(v, Regex) and not isinstance(v, list): |
||||||
|
raise ReportConfigError(f"Filter items must be a valid regex pattern or a list of valid patterns!\ |
||||||
|
{v} ({type(v)}) is not valid!") |
||||||
|
|
||||||
|
# Convert the strings to regex patterns |
||||||
|
if isinstance(v, list): |
||||||
|
filters[k] = [ |
||||||
|
r if isinstance(r, Pattern) |
||||||
|
else compile(r) |
||||||
|
for r in v |
||||||
|
] |
||||||
|
else: |
||||||
|
filters[k] = compile(v) if isinstance(v, Pattern) else v |
||||||
|
|
||||||
|
shared_columns: list[SharedColumn] = c_dict["shared_columns"] |
||||||
|
|
||||||
|
except KeyError as ke: |
||||||
|
raise ReportConfigError(f"Invalid report config!\n{ke}") |
||||||
|
|
||||||
|
return ReportConfig( |
||||||
|
paths= path_config, |
||||||
|
use_mssql= use_mssql, |
||||||
|
work_columns= work_columns, |
||||||
|
finished_columns= finished_column, |
||||||
|
filters= filters, |
||||||
|
shared_columns= shared_columns, |
||||||
|
) |
||||||
@ -0,0 +1,22 @@ |
|||||||
|
version = 1 |
||||||
|
|
||||||
|
disable_existing_loggers = false |
||||||
|
|
||||||
|
[formatters.custom] |
||||||
|
format = "'%(asctime)s - %(module)s - %(levelname)s - %(message)s'" |
||||||
|
|
||||||
|
[handlers.console] |
||||||
|
class = "logging.StreamHandler" |
||||||
|
level = "DEBUG" |
||||||
|
formatter = "custom" |
||||||
|
stream = "ext://sys.stdout" |
||||||
|
|
||||||
|
[handlers.file] |
||||||
|
class = "logging.FileHandler" |
||||||
|
level = "DEBUG" |
||||||
|
formatter = "custom" |
||||||
|
filename = "on_hold.log" |
||||||
|
|
||||||
|
[root] |
||||||
|
level = "ERROR" |
||||||
|
handlers = ["console", "file"] |
||||||
@ -0,0 +1,33 @@ |
|||||||
|
{ |
||||||
|
"input_directory": "/path/to/input/folder", |
||||||
|
"input_glob_pattern": { |
||||||
|
"GP": "*GP*.xlsx", |
||||||
|
"OB": "*OB*.xlsx" |
||||||
|
}, |
||||||
|
"output_directory": "/path/to/output", |
||||||
|
"interactive_inputs": false, |
||||||
|
"use_mssql": false, |
||||||
|
"database_path": "./onhold.db", |
||||||
|
"work_columns": [ |
||||||
|
"Col_A", |
||||||
|
"Col_B" |
||||||
|
], |
||||||
|
"finished_column": [ |
||||||
|
"Notes", |
||||||
|
"Conctract Number" |
||||||
|
], |
||||||
|
"filters": { |
||||||
|
"filter_name": [ |
||||||
|
"\\d{7}", |
||||||
|
"\\w+" |
||||||
|
], |
||||||
|
"other_filter": "(OB|GP)$" |
||||||
|
}, |
||||||
|
"shared_columns": [ |
||||||
|
{ |
||||||
|
"standardized_name": "contract_number", |
||||||
|
"GP": "Transactoin Description", |
||||||
|
"OB": "ContractNumber" |
||||||
|
} |
||||||
|
] |
||||||
|
} |
||||||
@ -0,0 +1,72 @@ |
|||||||
|
#### Paths: using '' makes the string 'raw' to avoid escape characters |
||||||
|
|
||||||
|
# Path to the directory to search for input report files |
||||||
|
input_directory = 'Work/Reports' |
||||||
|
# Regex used to discover newest files |
||||||
|
input_glob_pattern = { GP = "*GP*.xlsx", OB = '*OB*.xlsx'} |
||||||
|
# Path to the directory to save the reconcilation work report |
||||||
|
output_directory = 'Work/Output' |
||||||
|
# Fallback to interactive? |
||||||
|
interactive_inputs = false # NOT YET IMPLEMENTED |
||||||
|
|
||||||
|
|
||||||
|
#### DB |
||||||
|
|
||||||
|
# Whether to try using a mssql database |
||||||
|
# NOT YET IMPLEMENTED! |
||||||
|
use_mssql = false |
||||||
|
# Path to the SQLite database used to view/save reconcilations |
||||||
|
database_path = 'src/onhold_reconciliation.db' |
||||||
|
|
||||||
|
|
||||||
|
### Finished rec details |
||||||
|
|
||||||
|
# Columns to add to all 'work' sheets |
||||||
|
# also saved 'Reconcilations' database |
||||||
|
work_columns = [ |
||||||
|
"HideNextMonth", # Boolean column for user to indicate if this contract should be ignored next month |
||||||
|
"Resolution" # Text field describing the disprecany and how it may be resolved |
||||||
|
] |
||||||
|
# Columns to keep on reconcilation 'work' sheets |
||||||
|
finished_column = [ |
||||||
|
"contract_number", |
||||||
|
"vendor_name", |
||||||
|
"AppNum", # OB only |
||||||
|
"Document Number", # GP Only |
||||||
|
"DateBooked", # OB only |
||||||
|
"Document Date", # GP Only |
||||||
|
# 'Source' added for 'no match' |
||||||
|
] |
||||||
|
|
||||||
|
# Any regex filters that might be needed |
||||||
|
[filters] |
||||||
|
# Use label to distinguish a regex set |
||||||
|
doc_num_filters = [ |
||||||
|
"p(oin)?ts", |
||||||
|
"pool", |
||||||
|
"promo", |
||||||
|
"o(ver)?f(und)?", |
||||||
|
"m(ar)?ke?t", |
||||||
|
"title", |
||||||
|
"adj", |
||||||
|
"reg fee", |
||||||
|
"rent", |
||||||
|
"cma" |
||||||
|
] |
||||||
|
po_filter = ['(?i)^(?!.*cma(\s|\d)).*$'] |
||||||
|
|
||||||
|
# Columns that are featured & expected on both OB & GP |
||||||
|
[[shared_columns]] |
||||||
|
standardized_name = "contract_number" # The name you'd like to use to standardize them |
||||||
|
GP = "Transaction Description" # Column name used in GP |
||||||
|
OB = "Contract" # Column name used in GP |
||||||
|
|
||||||
|
[[shared_columns]] |
||||||
|
standardized_name = "onhold_amount" |
||||||
|
GP = "Current Trx Amount" |
||||||
|
OB = "CurrentOnHold" |
||||||
|
|
||||||
|
[[shared_columns]] |
||||||
|
standardized_name = "vendor_name" |
||||||
|
GP = "Vendor Name" |
||||||
|
OB = "DealerName" |
||||||
@ -0,0 +1,40 @@ |
|||||||
|
#### Paths: using '' makes the string 'raw' to avoid escape characters |
||||||
|
|
||||||
|
# Path to the directory to search for input report files |
||||||
|
input_directory = '/path/to/input/folder' |
||||||
|
# Regex used to discover newest files |
||||||
|
input_glob_pattern = { GP = "*GP*.xlsx", OB = '*OB*.xlsx'} |
||||||
|
# Path to the directory to save the reconcilation work report |
||||||
|
output_directory = '/path/to/output' |
||||||
|
# Fallback to interactive? |
||||||
|
interactive_inputs = false # NOT YET IMPLEMENTED |
||||||
|
|
||||||
|
|
||||||
|
#### DB |
||||||
|
|
||||||
|
# Whether to try using a mssql database |
||||||
|
# NOT YET IMPLEMENTED! |
||||||
|
use_mssql = false |
||||||
|
# Path to the SQLite database used to view/save reconcilations |
||||||
|
database_path = './onhold.db' |
||||||
|
|
||||||
|
|
||||||
|
### Finished rec details |
||||||
|
|
||||||
|
# Columns to add to all 'work' sheets |
||||||
|
# also saved 'Reconcilations' database |
||||||
|
work_columns = ["Col_A", "Col_B" ] |
||||||
|
# Columns to keep on reconcilation 'work' sheets |
||||||
|
finished_column = [ "Notes", "Conctract Number" ] |
||||||
|
|
||||||
|
# Any regex filters that might be needed |
||||||
|
[filters] |
||||||
|
# Use label to distinguish a regex set |
||||||
|
filter_name = [ '\d{7}', '\w+'] |
||||||
|
other_filter = '(OB|GP)$' |
||||||
|
|
||||||
|
# Columns that are featured & expected on both OB & GP |
||||||
|
[[shared_columns]] |
||||||
|
standardized_name = "contract_number" # The name you'd like to use to standardize them |
||||||
|
GP = "Transactoin Description" # Column name used in GP |
||||||
|
OB = "ContractNumber" # Column name used in GP |
||||||
@ -0,0 +1,63 @@ |
|||||||
|
""" |
||||||
|
Hold Reconciler is an application meant to help reconcile the differences in payments |
||||||
|
that marked as on hold in Great Plains and OnBase. |
||||||
|
|
||||||
|
It takes a report csv from OnBase and a report from GreatPlains and checks them |
||||||
|
against each other. It attempts to make them based on contract number and payment |
||||||
|
amount, or just the contract number. |
||||||
|
|
||||||
|
It also does a lot of filtering for the Great Plains report to remove irrelevant data. |
||||||
|
|
||||||
|
*Last Updated: version 1.3* |
||||||
|
*Originally developed in Spring of 2023 by Griffiths Lott (g@glott.me)* |
||||||
|
""" |
||||||
|
import re |
||||||
|
from re import Pattern |
||||||
|
import os |
||||||
|
from os.path import basename |
||||||
|
import glob |
||||||
|
import logging |
||||||
|
from pathlib import Path |
||||||
|
from tomllib import load |
||||||
|
from pandas import DataFrame, Series |
||||||
|
from typing import TypeVar, Literal |
||||||
|
|
||||||
|
|
||||||
|
import logging.config |
||||||
|
from logging import getLogger |
||||||
|
|
||||||
|
logger = getLogger(__name__) |
||||||
|
|
||||||
|
CN_REGEX = re.compile(r"\d{7}(-\d{3})?") |
||||||
|
|
||||||
|
def setup_logging(): |
||||||
|
""" |
||||||
|
Sets up logging configuration from the TOML file. If the logging configuration fails to be loaded from the file, |
||||||
|
a default logging configuration is used instead. |
||||||
|
|
||||||
|
Returns: |
||||||
|
logging.Logger: The logger instance. |
||||||
|
""" |
||||||
|
with open("src/configs/config_logger.toml", "rb") as f: |
||||||
|
config_dict: dict = load(f) |
||||||
|
try: |
||||||
|
# Try to load logging configuration from the TOML file |
||||||
|
logging.config.dictConfig(config_dict) |
||||||
|
except Exception as e: |
||||||
|
# If the logging configuration fails, use a default configuration and log the error |
||||||
|
logger = logging.getLogger() |
||||||
|
logger.setLevel(logging.DEBUG) |
||||||
|
logger.warning("Failed setting up logger!") |
||||||
|
logger.exception(e) |
||||||
|
logger.warning(f"Config:\n{config_dict}") |
||||||
|
return logger |
||||||
|
|
||||||
|
|
||||||
|
def drop_unnamed(df: DataFrame, inplace: bool = True) -> DataFrame|None: |
||||||
|
""" |
||||||
|
Drops all Unnamed columns from a dataframe. |
||||||
|
### CAUTION : This function acts *inplace* by deafult |
||||||
|
(on the orignal dataframe, not a copy!) |
||||||
|
""" |
||||||
|
cols = [c for c in df.columns if "Unnamed" in c] |
||||||
|
return df.drop(cols, axis=1, inplace=inplace) |
||||||
@ -0,0 +1,86 @@ |
|||||||
|
""" |
||||||
|
This is the main entry point for this application. It find the newest reports (GP & OB) |
||||||
|
then utilizes the reconcile module to find the differences between them. The output is |
||||||
|
saved as an excel file with todays date. |
||||||
|
""" |
||||||
|
# Custom module for reconciliation |
||||||
|
from src.helpers import setup_logging |
||||||
|
from src.reports import OnBaseReport, GreatPlainsReport, ReconciledReports |
||||||
|
from src.config import ReportConfig |
||||||
|
from src import ReportSource |
||||||
|
|
||||||
|
import pandas as pd |
||||||
|
from pandas import DataFrame, read_excel, ExcelFile |
||||||
|
import re |
||||||
|
from re import Pattern |
||||||
|
import logging |
||||||
|
from tomllib import load |
||||||
|
import logging.config |
||||||
|
from datetime import datetime as dt |
||||||
|
from pathlib import Path |
||||||
|
|
||||||
|
setup_logging() |
||||||
|
logger = logging.getLogger(__name__) |
||||||
|
logger.info(f"Logger started with level: {logger.level}") |
||||||
|
|
||||||
|
|
||||||
|
def pull_report_sheet(report_path: Path, report_source: ReportSource, report_config: ReportConfig) -> DataFrame|None: |
||||||
|
|
||||||
|
xl_file = ExcelFile(report_path) |
||||||
|
# Get the columns required to be a valid report for the given report type |
||||||
|
req_cols = [col[report_source.value] for col in report_config.shared_columns] |
||||||
|
|
||||||
|
logger.debug(f"GP_Req_cols: {req_cols}") |
||||||
|
# Sheets avaialble in the excel file |
||||||
|
sheets = xl_file.sheet_names |
||||||
|
# Dictionary of dataframes keyed by their sheet name |
||||||
|
sheet_dataframes: dict[str:DataFrame] = read_excel(xl_file, sheet_name=sheets) |
||||||
|
# Check each dataframe for the required column |
||||||
|
for sheet in sheet_dataframes: |
||||||
|
sheet_columns: list[str] = list(sheet_dataframes[sheet].columns) |
||||||
|
logger.debug(f"{report_source.value} ({sheet}) : {sheet_columns}") |
||||||
|
logger.debug(f"Matches {[r in sheet_columns for r in req_cols]}") |
||||||
|
if all([r in sheet_columns for r in req_cols]): |
||||||
|
logger.debug(f"FOUND: {sheet}") |
||||||
|
return sheet_dataframes[sheet] |
||||||
|
return None |
||||||
|
|
||||||
|
|
||||||
|
def main() -> int: |
||||||
|
""" |
||||||
|
This is the main function for the script. It reads configuration options from a TOML file, reads in the GP and OB |
||||||
|
Excel files, performs data reconciliation and analysis, and writes the results to a new Excel file. |
||||||
|
|
||||||
|
Returns: |
||||||
|
int: 0 if the script executes successfully. |
||||||
|
""" |
||||||
|
# Read the configuration options |
||||||
|
report_config: ReportConfig = ReportConfig.from_file(Path("src/configs/reports_config.toml")) |
||||||
|
|
||||||
|
# Get the GP and OB dataframes from the Excel files |
||||||
|
ob_report, gp_report = report_config.paths.get_most_recent() |
||||||
|
print(ob_report) |
||||||
|
print(gp_report) |
||||||
|
ob_df: DataFrame = pull_report_sheet(ob_report, ReportSource.OB, report_config) |
||||||
|
gp_df: DataFrame = pull_report_sheet(gp_report, ReportSource.GP, report_config) |
||||||
|
assert not ob_df.empty, "OB Data empty!" |
||||||
|
assert not gp_df.empty, "GP Data empty!" |
||||||
|
|
||||||
|
obr: OnBaseReport = OnBaseReport(ob_df, report_config) |
||||||
|
gpr: GreatPlainsReport = GreatPlainsReport(gp_df, report_config) |
||||||
|
|
||||||
|
rec_output: ReconciledReports = obr.reconcile(gpr) |
||||||
|
|
||||||
|
output_name: Path = Path(f"Reconciled Holds [{dt.now().strftime('%m-%d-%Y')}].xlsx") |
||||||
|
output_base: Path = report_config.paths.output_directory |
||||||
|
output_path: Path = Path(output_base, output_name) |
||||||
|
|
||||||
|
rec_output.save_reports(output_path) |
||||||
|
|
||||||
|
return 0 |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
print("Starting") |
||||||
|
main() |
||||||
|
print("Completed") |
||||||
@ -0,0 +1,155 @@ |
|||||||
|
""" |
||||||
|
Classes and functions to parse completed reconciliation reports and remember |
||||||
|
the resolutions of contracts. |
||||||
|
|
||||||
|
Also provides a way for the reconciler to check hold against previously |
||||||
|
resolved holds. |
||||||
|
|
||||||
|
*Last Updated: version 1.3 |
||||||
|
""" |
||||||
|
from src.helpers import drop_unnamed, setup_logging |
||||||
|
from src.config import ReportConfig, ReportSource |
||||||
|
from src.ghlib.database.database_manager import SQLiteManager, select_fields_statement |
||||||
|
|
||||||
|
from pathlib import Path |
||||||
|
from pandas import DataFrame, Series, read_sql_query, read_excel, concat |
||||||
|
from numpy import NaN |
||||||
|
from logging import getLogger |
||||||
|
from dataclasses import dataclass |
||||||
|
from hashlib import md5 |
||||||
|
from typing import TypeAlias |
||||||
|
|
||||||
|
setup_logging() |
||||||
|
logger = getLogger(__name__) |
||||||
|
|
||||||
|
col_hash: TypeAlias = str |
||||||
|
|
||||||
|
def hash_cols(row: Series, cols_to_hash: list[str]) -> col_hash: |
||||||
|
md5_hash = md5() |
||||||
|
md5_hash.update((''.join(str(row[col]) for col in cols_to_hash)).encode('utf-8')) |
||||||
|
return md5_hash.hexdigest() |
||||||
|
|
||||||
|
def create_identifier(df: DataFrame) -> DataFrame: |
||||||
|
""" |
||||||
|
We want to create a unqiue and replicable ID to identify each payment pair. |
||||||
|
Some transactions may have 1 blank ID which can cause an undeterimable hash. |
||||||
|
For this reason we must replace empty IDs with x so that it will have a replicable |
||||||
|
value. |
||||||
|
|
||||||
|
Then the two ideas are hashed together using md5. Resulting in a unique 32 character |
||||||
|
identifier that can be reproduced. |
||||||
|
""" |
||||||
|
for id in ["ID_OB","ID_GP"]: |
||||||
|
df[id].fillna("x", inplace=True) |
||||||
|
df["Indentifier"] = df.apply(lambda row: |
||||||
|
hash_cols(row, ["ID_OB","ID_GP"]), axis=1 |
||||||
|
) |
||||||
|
for id in ["ID_OB","ID_GP"]: |
||||||
|
df[id].replace('x',NaN, inplace=True) |
||||||
|
return df |
||||||
|
|
||||||
|
def save_rec(resolved_dataframes: list[DataFrame], report_config: ReportConfig): |
||||||
|
""" |
||||||
|
""" |
||||||
|
sqlManager: SQLiteManager = SQLiteManager(report_config.paths.db_path) |
||||||
|
with sqlManager.get_session() as session: |
||||||
|
|
||||||
|
rdf: DataFrame |
||||||
|
for rdf in resolved_dataframes: |
||||||
|
cols: list[str] = rdf.columns.to_list() |
||||||
|
logger.debug(f"{cols=}") |
||||||
|
if "onhold_amount" in cols: |
||||||
|
logger.debug("Found 'onhold_amount' in rdf: no_match dataframe") |
||||||
|
# Split the on_hold col to normalize with amount mismatch |
||||||
|
rdf["onhold_amount_GP"] = rdf.apply(lambda row: |
||||||
|
row["onhold_amount"] if row["Source"] == "GP" else None |
||||||
|
, axis=1) |
||||||
|
rdf["onhold_amount_OB"] = rdf.apply(lambda row: |
||||||
|
row["onhold_amount"] if row["Source"] == "OB" else None |
||||||
|
, axis=1 ) |
||||||
|
else: |
||||||
|
logger.debug("No 'onhold_amount' col found in rdf: amount_mismatch dataframe") |
||||||
|
|
||||||
|
# Create a unified column for index |
||||||
|
rdf = create_identifier(rdf) |
||||||
|
|
||||||
|
rec_cols: list[str] = [ |
||||||
|
"Indentifier", |
||||||
|
"ID_GP", |
||||||
|
"ID_OB", |
||||||
|
] |
||||||
|
rec_cols.extend(report_config.work_columns) |
||||||
|
|
||||||
|
rdf = rdf[rec_cols] |
||||||
|
rdf.set_index("Indentifier", inplace=True, drop=True) |
||||||
|
rdf.drop_duplicates(inplace=True) |
||||||
|
rdf = rdf.dropna(axis=0, how="all", subset=report_config.work_columns) |
||||||
|
logger.debug(f"Saving resolutions to db:\n{rdf}") |
||||||
|
|
||||||
|
rdf.to_sql('Resolutions', |
||||||
|
con=session.connection(), |
||||||
|
if_exists="append" |
||||||
|
) |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_prev_reconciled(identfiers: list[col_hash], db_location: Path) -> DataFrame|None: |
||||||
|
""" |
||||||
|
Get a DataFrame of previously reconciled contracts from an SQLite database. |
||||||
|
|
||||||
|
Args: |
||||||
|
contracts (list[str]): A list of contract numbers to check for previously reconciled contracts. |
||||||
|
|
||||||
|
Returns: |
||||||
|
DataFrame: A DataFrame of previously reconciled contracts, or an empty DataFrame if none are found. |
||||||
|
""" |
||||||
|
# Create a DB manager |
||||||
|
sqlManager: SQLiteManager = SQLiteManager(db_location) |
||||||
|
|
||||||
|
# Create a temp table to hold this batches contract numbers |
||||||
|
# this table will be cleared when sqlManager goes out of scope |
||||||
|
temp_table_statement = """ |
||||||
|
CREATE TEMPORARY TABLE CUR_IDENT (Indentifier VARCHAR(32)); |
||||||
|
""" |
||||||
|
sqlManager.execute(temp_table_statement) |
||||||
|
|
||||||
|
# Insert the current contracts into the temp table |
||||||
|
insert_idents = f""" |
||||||
|
INSERT INTO CUR_IDENT (Indentifier) VALUES |
||||||
|
{', '.join([f"('{cn}')" for cn in identfiers])}; |
||||||
|
""" |
||||||
|
|
||||||
|
logger.debug(f"{insert_idents=}") |
||||||
|
|
||||||
|
sqlManager.execute(insert_idents) |
||||||
|
|
||||||
|
# Select previously resolved contracts |
||||||
|
res_query = """ |
||||||
|
SELECT r.* |
||||||
|
FROM Resolutions r |
||||||
|
JOIN CUR_IDENT i |
||||||
|
ON r.Indentifier = i.Indentifier; |
||||||
|
""" |
||||||
|
resolved: DataFrame = sqlManager.execute(res_query, as_dataframe=True) |
||||||
|
return resolved |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
import argparse |
||||||
|
from logging import DEBUG |
||||||
|
logger.setLevel(DEBUG) |
||||||
|
|
||||||
|
parser = argparse.ArgumentParser( |
||||||
|
prog="HoldReconcilerRecord", |
||||||
|
) |
||||||
|
parser.add_argument("-i", "--input") |
||||||
|
args = parser.parse_args() |
||||||
|
|
||||||
|
# No Match |
||||||
|
no_match: DataFrame = read_excel(args.input, sheet_name="No Match") |
||||||
|
# Amount Mismatch |
||||||
|
amt_mm: DataFrame = read_excel(args.input, sheet_name="Amount Mismatch") |
||||||
|
|
||||||
|
report_config = ReportConfig(Path(r"configs\reports_config.toml")) |
||||||
|
|
||||||
|
save_rec(report_config, resolved_dataframes=[no_match, amt_mm]) |
||||||
@ -0,0 +1,346 @@ |
|||||||
|
from pandas import DataFrame, merge, to_datetime, NaT, concat, ExcelWriter |
||||||
|
from openpyxl import Workbook, load_workbook |
||||||
|
from abc import ABC |
||||||
|
from logging import getLogger |
||||||
|
import re |
||||||
|
from re import Pattern |
||||||
|
import datetime |
||||||
|
from copy import deepcopy |
||||||
|
from dataclasses import dataclass |
||||||
|
from pathlib import Path |
||||||
|
|
||||||
|
from src.helpers import CN_REGEX, drop_unnamed |
||||||
|
from src.memory import get_prev_reconciled, hash_cols, col_hash, create_identifier |
||||||
|
from src.config import ReportConfig, ReportSource |
||||||
|
|
||||||
|
logger = getLogger(__name__) |
||||||
|
|
||||||
|
@dataclass |
||||||
|
class ReconciledReports: |
||||||
|
no_match: DataFrame |
||||||
|
amt_mismatch: DataFrame |
||||||
|
prev_rec: DataFrame |
||||||
|
gp_filtered: DataFrame |
||||||
|
ob_overdue: DataFrame |
||||||
|
|
||||||
|
def save_reports(self, output_path: Path): |
||||||
|
with ExcelWriter(output_path, mode='w') as writer: |
||||||
|
self.no_match.drop_duplicates(inplace=True) |
||||||
|
self.no_match.to_excel(writer, sheet_name="No Match", |
||||||
|
index=False, freeze_panes=(1,3) |
||||||
|
) |
||||||
|
self.amt_mismatch.drop_duplicates(inplace=True) |
||||||
|
self.amt_mismatch.to_excel(writer, sheet_name="Amount Mismatch", |
||||||
|
index=False, freeze_panes=(1,3) |
||||||
|
) |
||||||
|
self.ob_overdue.to_excel(writer, sheet_name="Overdue", |
||||||
|
index=False |
||||||
|
) |
||||||
|
self.prev_rec.to_excel(writer, sheet_name="Previously Reconciled", |
||||||
|
index=False, freeze_panes=(1,3) |
||||||
|
) |
||||||
|
self.gp_filtered.to_excel(writer, sheet_name="Filtered from GP", |
||||||
|
index=False, freeze_panes=(1,0) |
||||||
|
) |
||||||
|
|
||||||
|
wb: Workbook = load_workbook(output_path) |
||||||
|
for sheet in ["No Match", "Amount Mismatch"]: |
||||||
|
ws = wb[sheet] |
||||||
|
ws.column_dimensions['A'].hidden = True |
||||||
|
ws.column_dimensions['B'].hidden = True |
||||||
|
for sheet in ["Filtered from GP", "Previously Reconciled"]: |
||||||
|
wb[sheet].sheet_state = "hidden" |
||||||
|
wb.save(output_path) |
||||||
|
wb.close() |
||||||
|
|
||||||
|
class HoldReport(ABC): |
||||||
|
|
||||||
|
source = "" |
||||||
|
|
||||||
|
def __init__(self, dataframe: DataFrame, reports_config: ReportConfig) -> None: |
||||||
|
self.config = reports_config |
||||||
|
drop_unnamed(dataframe) |
||||||
|
self.df = dataframe |
||||||
|
self.df = self._add_work_columns(self.df, reports_config.work_columns) |
||||||
|
self._normalize() |
||||||
|
|
||||||
|
|
||||||
|
def _normalize(self): |
||||||
|
|
||||||
|
# Rename the columns to standardize the column names |
||||||
|
self.df.rename( columns= { sc_dict[self.source] : sc_dict["standardized_name"] |
||||||
|
for sc_dict in self.config.shared_columns |
||||||
|
}, inplace=True) |
||||||
|
|
||||||
|
# Convert the on-hold amount column to float format and round to two decimal places |
||||||
|
self.df["onhold_amount"] = self.df["onhold_amount"].astype(float).round(2) |
||||||
|
|
||||||
|
# Use regex to extract the contract number from the column values and create a new column with the standardized format |
||||||
|
self.df["contract_number"] = self.df["contract_number"].apply( |
||||||
|
lambda cn: str(cn) if not re.search(CN_REGEX, str(cn)) |
||||||
|
else re.search(CN_REGEX, str(cn)).group(0) |
||||||
|
) |
||||||
|
|
||||||
|
# Create a new column with a unique transaction ID |
||||||
|
self.df["ID"] = self.df["contract_number"] +'_'+\ |
||||||
|
self.df["onhold_amount"].astype(str) |
||||||
|
|
||||||
|
# Create a new column with the data source |
||||||
|
self.df["Source"] = self.source |
||||||
|
|
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def _remove_prev_recs(contract_match, no_match, db_location: Path) -> \ |
||||||
|
tuple[DataFrame, DataFrame, DataFrame]: |
||||||
|
""" |
||||||
|
""" |
||||||
|
|
||||||
|
idents: list[col_hash] = create_identifier(contract_match)["Indentifier"].to_list() |
||||||
|
idents.extend(create_identifier(no_match)["Indentifier"].to_list()) |
||||||
|
logger.debug(f"{idents=}") |
||||||
|
# Get previsouly reced |
||||||
|
prev_recs: DataFrame|None = get_prev_reconciled(idents, db_location) |
||||||
|
|
||||||
|
if prev_recs is None: |
||||||
|
logger.info("No previously reconciled!") |
||||||
|
return DataFrame(), contract_match, no_match |
||||||
|
|
||||||
|
dfs = [] |
||||||
|
for df in [contract_match, no_match]: |
||||||
|
start_size = df.shape[0] |
||||||
|
logger.debug(f"Report DF: \n{df}") |
||||||
|
logger.debug(f"prev_rec: \n{prev_recs}") |
||||||
|
|
||||||
|
df = merge( |
||||||
|
df, |
||||||
|
prev_recs, |
||||||
|
how="left", |
||||||
|
on= "Indentifier", |
||||||
|
suffixes=("_cur", "_prev") |
||||||
|
) |
||||||
|
|
||||||
|
df = HoldReport._created_combined_col("HideNextMonth", df, ["prev", "cur"]) |
||||||
|
df = HoldReport._created_combined_col("Resolution", df, ["prev", "cur"]) |
||||||
|
df["ID_OB"] = df["ID_OB_cur"] |
||||||
|
df["ID_GP"] = df["ID_GP_cur"] |
||||||
|
|
||||||
|
# Drop anything that should be ignored |
||||||
|
df = df[df["HideNextMonth"] != True] |
||||||
|
logger.info(f"Prev res added:\n{df}") |
||||||
|
|
||||||
|
col_to_drop = [] |
||||||
|
for c in df.keys().to_list(): |
||||||
|
if "_prev" in c in c or "_cur" in c: |
||||||
|
col_to_drop.append(c) |
||||||
|
|
||||||
|
logger.debug(f"{col_to_drop=}") |
||||||
|
df.drop( |
||||||
|
columns= col_to_drop, |
||||||
|
inplace=True |
||||||
|
) |
||||||
|
# Restandardize |
||||||
|
end_size = df.shape[0] |
||||||
|
logger.info(f"Reduced df by {start_size-end_size}") |
||||||
|
dfs.append(df) |
||||||
|
return prev_recs, dfs[0], dfs[1] |
||||||
|
|
||||||
|
def _remove_full_matches(self, other: 'HoldReport'): |
||||||
|
""" |
||||||
|
Removes any contracts that match both contract number and hold amount. |
||||||
|
These do not need to be reconciled. |
||||||
|
|
||||||
|
This id done 'in place' to both dataframes |
||||||
|
""" |
||||||
|
filter_id_match: DataFrame = self.df[~(self.df["ID"].isin(other.df["ID"]))] |
||||||
|
other.df: DataFrame = other.df[~(other.df["ID"].isin(self.df["ID"]))] |
||||||
|
self.df = filter_id_match |
||||||
|
self.combined_missing: DataFrame = concat([self.df, other.df], ignore_index=True) |
||||||
|
#self.combined_missing.to_excel("ALL MISSING.xlsx") |
||||||
|
logger.debug(f"Combined Missing:\n{self.combined_missing}") |
||||||
|
logger.info(f"Payments with errors: {self.combined_missing.shape[0]}") |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def _created_combined_col(column: str, target_df: DataFrame, sources: tuple[str, str]) -> DataFrame : |
||||||
|
""" |
||||||
|
Creates a new column by filling empty columns of this source, with the matching column from another source |
||||||
|
""" |
||||||
|
this, that = sources |
||||||
|
target_df[column] = target_df[f"{column}_{this}"].fillna( |
||||||
|
target_df[f"{column}_{that}"] |
||||||
|
) |
||||||
|
return target_df |
||||||
|
|
||||||
|
|
||||||
|
def _requires_rec(self, other: 'HoldReport') -> tuple[DataFrame, DataFrame]: |
||||||
|
""" |
||||||
|
To be run after full matches have been re |
||||||
|
""" |
||||||
|
|
||||||
|
# Merge the two filtered DataFrames on the contract number |
||||||
|
contract_match = merge( |
||||||
|
self.df, other.df, |
||||||
|
how="inner", |
||||||
|
on=["contract_number"], |
||||||
|
suffixes=('_'+self.source, '_'+other.source) |
||||||
|
) |
||||||
|
|
||||||
|
contract_match = create_identifier(contract_match) |
||||||
|
|
||||||
|
#contract_match.to_excel("CONTRACT_MATCH.xlsx") |
||||||
|
|
||||||
|
for col in ["vendor_name", "HideNextMonth", "Resolution"]: |
||||||
|
self._created_combined_col(col, contract_match, (self.source, other.source)) |
||||||
|
|
||||||
|
logger.debug(f"_requires_rec | contract_match:\n{contract_match.columns} ({contract_match.shape})") |
||||||
|
|
||||||
|
no_match: DataFrame = self.combined_missing[~( |
||||||
|
self.combined_missing["contract_number"].isin( |
||||||
|
contract_match["contract_number"] |
||||||
|
)) |
||||||
|
] |
||||||
|
no_match[f"ID_{self.source}"] = no_match.apply(lambda row: |
||||||
|
row["ID"] if row["Source"] == self.source else None |
||||||
|
, axis=1) |
||||||
|
no_match[f"ID_{other.source}"] = no_match.apply(lambda row: |
||||||
|
row["ID"] if row["Source"] == other.source else None |
||||||
|
, axis=1) |
||||||
|
|
||||||
|
no_match = create_identifier(no_match) |
||||||
|
|
||||||
|
logger.debug(f"_requires_rec | no_match:\n{no_match.columns} ({no_match.shape})") |
||||||
|
self.prev_recs, contract_match, no_match = self._remove_prev_recs(contract_match, |
||||||
|
no_match, self.config.paths.db_path |
||||||
|
) |
||||||
|
|
||||||
|
return contract_match, no_match |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def _add_work_columns(df: DataFrame, work_cols: list) -> DataFrame: |
||||||
|
""" |
||||||
|
Add empty columns to the dataframe to faciliate working through the report. |
||||||
|
""" |
||||||
|
logger.debug("Adding work columns!") |
||||||
|
df_cols: list[str] = df.columns.to_list() |
||||||
|
for col in work_cols: |
||||||
|
if col not in df_cols: |
||||||
|
df[col] = '' |
||||||
|
return df |
||||||
|
|
||||||
|
def reconcile(self, other: 'HoldReport') -> ReconciledReports: |
||||||
|
""" |
||||||
|
""" |
||||||
|
assert self.source != other.source, f"Reports to reconcile must be from different sources.\ |
||||||
|
({self.source} , {other.source})." |
||||||
|
self._remove_full_matches(other) |
||||||
|
|
||||||
|
if self.source == "OB": |
||||||
|
over_due: DataFrame = self.overdue |
||||||
|
filtered_gp: DataFrame = other.filtered |
||||||
|
elif self.source == "GP": |
||||||
|
over_due: DataFrame = other.overdue |
||||||
|
filtered_gp: DataFrame = self.filtered |
||||||
|
|
||||||
|
logger.debug(f"Removed matches:\n{self.df}") |
||||||
|
|
||||||
|
amount_mismatch, no_match = self._requires_rec(other) |
||||||
|
|
||||||
|
logger.debug(f"reconcile | no_match unaltered\n{no_match.columns} ({no_match.shape})") |
||||||
|
logger.debug(f"reconcile | am_mm unaltered:\n{amount_mismatch.columns} ({amount_mismatch.shape})") |
||||||
|
|
||||||
|
# Formatting |
||||||
|
columns: list[str] = ["ID_GP", "ID_OB"] |
||||||
|
columns.extend(self.config.finished_columns) |
||||||
|
|
||||||
|
nm_cols:list[str] = deepcopy(columns) |
||||||
|
nm_cols.insert(3,"onhold_amount") |
||||||
|
nm_cols.insert(4,"Source") |
||||||
|
|
||||||
|
columns.insert(3,"onhold_amount_GP") |
||||||
|
columns.insert(4, "onhold_amount_OB") |
||||||
|
|
||||||
|
# Select and reorder columns |
||||||
|
no_match = no_match[ |
||||||
|
nm_cols |
||||||
|
] |
||||||
|
|
||||||
|
amount_mismatch = amount_mismatch[ |
||||||
|
columns |
||||||
|
] |
||||||
|
logger.info(f"no_match: {no_match.shape[0]}") |
||||||
|
logger.info(f"am_mm: {amount_mismatch.shape[0]}") |
||||||
|
|
||||||
|
reconciled: ReconciledReports = ReconciledReports( |
||||||
|
no_match=no_match, |
||||||
|
amt_mismatch=amount_mismatch, |
||||||
|
prev_rec=self.prev_recs, |
||||||
|
gp_filtered=filtered_gp, |
||||||
|
ob_overdue = over_due |
||||||
|
) |
||||||
|
return reconciled |
||||||
|
|
||||||
|
|
||||||
|
class OnBaseReport(HoldReport): |
||||||
|
|
||||||
|
source = "OB" |
||||||
|
|
||||||
|
def __init__(self, dataframe: DataFrame, reports_config: ReportConfig) -> None: |
||||||
|
self.overdue = self._get_overdue(dataframe) |
||||||
|
super().__init__(dataframe, reports_config) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def _get_overdue(dataframe: DataFrame) -> DataFrame: |
||||||
|
""" |
||||||
|
""" |
||||||
|
dataframe["InstallDate"] = to_datetime(dataframe["InstallDate"]) |
||||||
|
dataframe["InstallDate"].fillna(NaT, inplace=True) |
||||||
|
overdue: DataFrame = dataframe[dataframe["InstallDate"].dt.date\ |
||||||
|
< datetime.date.today()] |
||||||
|
return overdue |
||||||
|
|
||||||
|
|
||||||
|
class GreatPlainsReport(HoldReport): |
||||||
|
|
||||||
|
source = "GP" |
||||||
|
|
||||||
|
def __init__(self, dataframe: DataFrame, report_config: ReportConfig) -> None: |
||||||
|
|
||||||
|
self.filtered: DataFrame = self._filter( |
||||||
|
gp_report_df= dataframe, |
||||||
|
doc_num_filters= report_config.filters["doc_num_filters"], |
||||||
|
good_po_num_regex= report_config.filters["po_filter"][0] |
||||||
|
) |
||||||
|
super().__init__(dataframe, report_config) |
||||||
|
|
||||||
|
@staticmethod |
||||||
|
def _filter(gp_report_df: DataFrame, |
||||||
|
doc_num_filters: list[Pattern], good_po_num_regex: Pattern |
||||||
|
) -> DataFrame: |
||||||
|
|
||||||
|
GOOD_PO_NUM = good_po_num_regex |
||||||
|
|
||||||
|
bad_doc_num = '(?i)' |
||||||
|
rx : Pattern |
||||||
|
for rx in doc_num_filters: |
||||||
|
bad_doc_num += f"({rx})|" |
||||||
|
bad_doc_num = re.compile(bad_doc_num[:-1], re.IGNORECASE) |
||||||
|
|
||||||
|
# Create a mask/filter that will keep rows that match these |
||||||
|
# requirments |
||||||
|
keep_mask = ( |
||||||
|
(gp_report_df["Document Type"] == "Invoice") & |
||||||
|
(gp_report_df["Purchase Order Number"].str.contains(GOOD_PO_NUM)) |
||||||
|
) |
||||||
|
|
||||||
|
# Get the rows that DO NOT fit the keep_mask |
||||||
|
dropped_posotives: DataFrame = gp_report_df[~keep_mask] |
||||||
|
# Drop the rows to filter |
||||||
|
gp_report_df.drop(dropped_posotives.index, inplace=True) |
||||||
|
|
||||||
|
# Create a filter to remove rows that meet this requirment |
||||||
|
# Making this a negative in the keep mask is more trouble than |
||||||
|
# it's worth |
||||||
|
remove_mask = gp_report_df["Document Number"].str.contains(bad_doc_num) |
||||||
|
dropped_negatives: DataFrame = gp_report_df[remove_mask] |
||||||
|
gp_report_df.drop(dropped_negatives.index, inplace=True) |
||||||
|
|
||||||
|
return concat([dropped_posotives,dropped_negatives], ignore_index=False) |
||||||
@ -0,0 +1,72 @@ |
|||||||
|
import unittest |
||||||
|
from pathlib import Path |
||||||
|
from re import Pattern, compile |
||||||
|
from src import config |
||||||
|
from src import ReportSource |
||||||
|
|
||||||
|
class TestReportConfig(unittest.TestCase): |
||||||
|
|
||||||
|
def test_from_file(self): |
||||||
|
# Provide the path to your config file |
||||||
|
config_file = Path(r"tests\test_inputs\TEST_reports_config.toml") |
||||||
|
|
||||||
|
# Call the static method from_file to create an instance of ReportConfig |
||||||
|
report_config = config.ReportConfig.from_file(config_file) |
||||||
|
|
||||||
|
# Assert the values of the attributes in the created instance |
||||||
|
self.assertEqual(report_config.paths.input_directory, Path(r"tests\test_inputs\TestSearch")) |
||||||
|
self.assertEqual(report_config.paths.gp_glob, r'*GP*.xlsx') |
||||||
|
self.assertEqual(report_config.paths.ob_glob, r"*OB*.xlsx") |
||||||
|
self.assertEqual(report_config.paths.output_directory, Path(r"tests\test_outputs")) |
||||||
|
self.assertEqual(report_config.use_mssql, False) |
||||||
|
self.assertEqual(report_config.paths.db_path, Path(r"tests\test_inputs\Static\test_static_OnHold.db")) |
||||||
|
self.assertEqual(report_config.work_columns, ["HideNextMonth", "Resolution"]) |
||||||
|
self.assertEqual(report_config.finished_columns, [ |
||||||
|
"contract_number", |
||||||
|
"vendor_name", |
||||||
|
"AppNum", |
||||||
|
"Document Number", |
||||||
|
"DateBooked", |
||||||
|
"Document Date", |
||||||
|
]) |
||||||
|
self.assertEqual(report_config.filters["doc_num_filters"], [ |
||||||
|
compile(r"p(oin)?ts",), |
||||||
|
compile(r"pool",), |
||||||
|
compile(r"promo",), |
||||||
|
compile(r"o(ver)?f(und)?",), |
||||||
|
compile(r"m(ar)?ke?t",), |
||||||
|
compile(r"title",), |
||||||
|
compile(r"adj",), |
||||||
|
compile(r"reg fee",), |
||||||
|
compile(r"rent",), |
||||||
|
compile(r"cma",), |
||||||
|
]) |
||||||
|
self.assertEqual(report_config.filters["po_filter"], [compile(r"(?i)^(?!.*cma(\s|\d)).*$")]) |
||||||
|
self.assertEqual(report_config.shared_columns[0]["standardized_name"], "contract_number") |
||||||
|
self.assertEqual(report_config.shared_columns[0]["GP"], "Transaction Description") |
||||||
|
self.assertEqual(report_config.shared_columns[0]["OB"], "Contract") |
||||||
|
self.assertEqual(report_config.shared_columns[1]["standardized_name"], "onhold_amount") |
||||||
|
self.assertEqual(report_config.shared_columns[1]["GP"], "Current Trx Amount") |
||||||
|
self.assertEqual(report_config.shared_columns[1]["OB"], "CurrentOnHold") |
||||||
|
self.assertEqual(report_config.shared_columns[2]["standardized_name"], "vendor_name") |
||||||
|
self.assertEqual(report_config.shared_columns[2]["GP"], "Vendor Name") |
||||||
|
self.assertEqual(report_config.shared_columns[2]["OB"], "DealerName") |
||||||
|
|
||||||
|
def test_get_newest(self): |
||||||
|
# Provide the path to your config file |
||||||
|
config_file = Path(r"tests\test_inputs\TEST_reports_config.toml") |
||||||
|
|
||||||
|
# Call the static method from_file to create an instance of ReportConfig |
||||||
|
report_config = config.ReportConfig.from_file(config_file) |
||||||
|
|
||||||
|
newest_ob: Path = report_config.paths.get_most_recent(report_type=ReportSource.OB) |
||||||
|
self.assertEqual(newest_ob.name, "April 2023 OB.xlsx") |
||||||
|
newest_gp: Path = report_config.paths.get_most_recent(report_type=ReportSource.GP) |
||||||
|
self.assertEqual(newest_gp.name, "April GP.xlsx") |
||||||
|
|
||||||
|
nob, ngp = report_config.paths.get_most_recent() |
||||||
|
self.assertEqual(nob.name, "April 2023 OB.xlsx") |
||||||
|
self.assertEqual(ngp.name, "April GP.xlsx") |
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
unittest.main() |
||||||
@ -0,0 +1,72 @@ |
|||||||
|
#### Paths: using '' makes the string 'raw' to avoid escape characters |
||||||
|
|
||||||
|
# Path to the directory to search for input report files |
||||||
|
input_directory = 'tests\test_inputs\TestSearch' |
||||||
|
# Regex used to discover newest files |
||||||
|
input_glob_pattern = { GP = "*GP*.xlsx", OB = '*OB*.xlsx'} |
||||||
|
# Path to the directory to save the reconcilation work report |
||||||
|
output_directory = 'tests\test_outputs' |
||||||
|
# Fallback to interactive? |
||||||
|
interactive_inputs = false # NOT YET IMPLEMENTED |
||||||
|
|
||||||
|
|
||||||
|
#### DB |
||||||
|
|
||||||
|
# Whether to try using a mssql database |
||||||
|
# NOT YET IMPLEMENTED! |
||||||
|
use_mssql = false |
||||||
|
# Path to the SQLite database used to view/save reconcilations |
||||||
|
database_path = 'tests\test_inputs\Static\test_static_OnHold.db' |
||||||
|
|
||||||
|
|
||||||
|
### Finished rec details |
||||||
|
|
||||||
|
# Columns to add to all 'work' sheets |
||||||
|
# also saved 'Reconcilations' database |
||||||
|
work_columns = [ |
||||||
|
"HideNextMonth", # Boolean column for user to indicate if this contract should be ignored next month |
||||||
|
"Resolution" # Text field describing the disprecany and how it may be resolved |
||||||
|
] |
||||||
|
# Columns to keep on reconcilation 'work' sheets |
||||||
|
finished_column = [ |
||||||
|
"contract_number", |
||||||
|
"vendor_name", |
||||||
|
"AppNum", # OB only |
||||||
|
"Document Number", # GP Only |
||||||
|
"DateBooked", # OB only |
||||||
|
"Document Date", # GP Only |
||||||
|
# 'Source' added for 'no match' |
||||||
|
] |
||||||
|
|
||||||
|
# Any regex filters that might be needed |
||||||
|
[filters] |
||||||
|
# Use label to distinguish a regex set |
||||||
|
doc_num_filters = [ |
||||||
|
"p(oin)?ts", |
||||||
|
"pool", |
||||||
|
"promo", |
||||||
|
"o(ver)?f(und)?", |
||||||
|
"m(ar)?ke?t", |
||||||
|
"title", |
||||||
|
"adj", |
||||||
|
"reg fee", |
||||||
|
"rent", |
||||||
|
"cma" |
||||||
|
] |
||||||
|
po_filter = ['(?i)^(?!.*cma(\s|\d)).*$'] |
||||||
|
|
||||||
|
# Columns that are featured & expected on both OB & GP |
||||||
|
[[shared_columns]] |
||||||
|
standardized_name = "contract_number" # The name you'd like to use to standardize them |
||||||
|
GP = "Transaction Description" # Column name used in GP |
||||||
|
OB = "Contract" # Column name used in GP |
||||||
|
|
||||||
|
[[shared_columns]] |
||||||
|
standardized_name = "onhold_amount" |
||||||
|
GP = "Current Trx Amount" |
||||||
|
OB = "CurrentOnHold" |
||||||
|
|
||||||
|
[[shared_columns]] |
||||||
|
standardized_name = "vendor_name" |
||||||
|
GP = "Vendor Name" |
||||||
|
OB = "DealerName" |
||||||
Binary file not shown.
Binary file not shown.
@ -0,0 +1,78 @@ |
|||||||
|
from pandas import DataFrame, merge, to_datetime, NaT, concat, read_excel |
||||||
|
from pathlib import Path |
||||||
|
from re import Pattern |
||||||
|
import pytest as pt |
||||||
|
|
||||||
|
from src.config import ReportConfig, ReportSource |
||||||
|
from src.reports import GreatPlainsReport, OnBaseReport, ReconciledReports |
||||||
|
from src.hold_reconciler import pull_report_sheet |
||||||
|
|
||||||
|
class TestReport: |
||||||
|
|
||||||
|
@pt.fixture(autouse=True) |
||||||
|
def setup(self): |
||||||
|
self.report_config = ReportConfig.from_file( |
||||||
|
Path(r"./tests/test_inputs/TEST_reports_config.toml") |
||||||
|
) |
||||||
|
|
||||||
|
|
||||||
|
def test_full(self): |
||||||
|
""" |
||||||
|
Full process test. |
||||||
|
|
||||||
|
This tests inputs will need to be adjust anytime a change is made to the |
||||||
|
input/output report layouts, filtering, trimming, normalization. |
||||||
|
|
||||||
|
Basically, this is just to make sure everything still works after making |
||||||
|
TINY changes, that are not meant to effect the structure/logic of the program |
||||||
|
""" |
||||||
|
|
||||||
|
ob_df = pull_report_sheet( |
||||||
|
Path(r"./tests/test_inputs\Static\April 2023 OB.xlsx"), |
||||||
|
ReportSource.OB, |
||||||
|
self.report_config |
||||||
|
) |
||||||
|
gp_df = pull_report_sheet( |
||||||
|
Path(r"./tests/test_inputs\Static\April GP.xlsx"), |
||||||
|
ReportSource.GP, |
||||||
|
self.report_config |
||||||
|
) |
||||||
|
|
||||||
|
assert not ob_df.empty, "OB Data empty!" |
||||||
|
assert not gp_df.empty, "GP Data empty!" |
||||||
|
|
||||||
|
obr: OnBaseReport = OnBaseReport(ob_df, self.report_config) |
||||||
|
gpr: GreatPlainsReport = GreatPlainsReport(gp_df, self.report_config) |
||||||
|
|
||||||
|
rec_output: ReconciledReports = obr.reconcile(gpr) |
||||||
|
|
||||||
|
output_path: Path = Path( |
||||||
|
self.report_config.paths.output_directory, |
||||||
|
"TEST_REPORT.xlsx" |
||||||
|
) |
||||||
|
rec_output.save_reports(output_path) |
||||||
|
|
||||||
|
SHEET_NAMES = [ |
||||||
|
"No Match", |
||||||
|
"Amount Mismatch", |
||||||
|
"Overdue", |
||||||
|
"Previously Reconciled", |
||||||
|
"Filtered from GP", |
||||||
|
] |
||||||
|
|
||||||
|
CONTROL: dict[str:DataFrame] = read_excel( |
||||||
|
Path(r"./tests/test_inputs/Static/Reconciled Holds [TEST_FIN].xlsx"), |
||||||
|
sheet_name=SHEET_NAMES |
||||||
|
) |
||||||
|
|
||||||
|
new: dict[str:DataFrame] = read_excel( |
||||||
|
output_path, |
||||||
|
sheet_name=SHEET_NAMES |
||||||
|
) |
||||||
|
|
||||||
|
for sheet in SHEET_NAMES: |
||||||
|
print(sheet) |
||||||
|
print(new[sheet]) |
||||||
|
print("Control: ") |
||||||
|
print(CONTROL[sheet]) |
||||||
|
assert new[sheet].equals(CONTROL[sheet]) |
||||||
@ -0,0 +1 @@ |
|||||||
|
2.1 |
||||||
Loading…
Reference in new issue