commit
89be621099
@ -0,0 +1,62 @@ |
|||||||
|
# Sample Basic Usage |
||||||
|
Import the EIN service you plan to use and search for an EIN: |
||||||
|
``` |
||||||
|
from EINService import EINTaxIDService |
||||||
|
|
||||||
|
# Instatiate an EINService object |
||||||
|
# This is what will be used to do all of our searches |
||||||
|
einService = EINTaxIDService() |
||||||
|
|
||||||
|
# Advanced Micro Devices Inc's EIN identifier: |
||||||
|
# This is the ein we will be searching. |
||||||
|
AMD_EIN = "94-1692300" |
||||||
|
# The return will be an EINData object |
||||||
|
# If the search was unsuccessful data members other than EIN will be None |
||||||
|
searchResult = einService.search_ein(AMD_EIN) |
||||||
|
|
||||||
|
print(searchResult) |
||||||
|
# EIN: 941692300 | Name: advanced micro devices inc | Address: 2485 augustine drive | City: santa clara | State: ca | Phone: 408 7494000 |
||||||
|
``` |
||||||
|
|
||||||
|
# Using with Excel/pandas |
||||||
|
You can also process lists of EINs or entire sets of EINData Objects. There is also a function to convert a dataframe into a list of EINData for easy comparison with search results: |
||||||
|
``` |
||||||
|
from EINService import EINTaxIDService, dataframe_to_eins |
||||||
|
import pandas as pd |
||||||
|
|
||||||
|
# Instatiate an EINService object |
||||||
|
# This is what will be used to do all of our searches |
||||||
|
einService = EINTaxIDService() |
||||||
|
|
||||||
|
# Here we pull in the data from excel |
||||||
|
einData = pd.read_excel("SampleData.xlsx") |
||||||
|
# Extract the eins column as a list of strings |
||||||
|
einList = einData["Lessee Tax-ID"].to_list() |
||||||
|
# The service will return a list EINData objects |
||||||
|
# if no match what found all data members besides ein will be None |
||||||
|
searchResults = einService.search_eins(einList) |
||||||
|
|
||||||
|
print(searchResults) |
||||||
|
|
||||||
|
# Can also convert a dataframe into a list of EINData |
||||||
|
# The requires that our dataframe has all of the nessary columns. |
||||||
|
# The defaults for these columns are: |
||||||
|
# "Lessee Tax-ID", |
||||||
|
# "NAME", |
||||||
|
# "ADDRESS" |
||||||
|
# "CITY" |
||||||
|
# "STATE" |
||||||
|
# "ZIP" |
||||||
|
# "PHONE" |
||||||
|
# |
||||||
|
# You can also specify your own column names as paramaters. |
||||||
|
einDataList = dataframe_to_eins(einData) |
||||||
|
print(einData) |
||||||
|
|
||||||
|
# This allows us to compare our search results to our 'local data' |
||||||
|
for i, localData in enumerate(einDataList): |
||||||
|
comparisonDict = localData.compare(searchResults[i]) |
||||||
|
print(comparisonDict) |
||||||
|
``` |
||||||
|
|
||||||
|
*Note: this library has built-in logging with debug, warning and error information. Include --logging-level=DEBUG to access this infromation.* |
||||||
Loading…
Reference in new issue