from pandas import DataFrame import re COLUMN_NAME_REGEX = re.compile(r"(?P(\w|\.|#|\/)+)", re.IGNORECASE) def replace_bad_cols(line: str, cols: list[str]): """ Replaces bad column names in a string with modified names that have spaces replaced with dots. Args: line (str): The string containing the column names to modify. cols (list[str]): A list of column names to modify. Returns: str: The modified string with bad column names replaced. """ for c in cols: # Replace spaces with dots in the column name gc = c.replace(' ', '.') # Replace the bad column name with the modified column name in the string line = line.replace(c, gc) return line def extract_data(input_doc: str, column_list: list[str]): """ Extracts data from a string in a table-like format, where columns are identified by a list of column names, and returns the data as a Pandas DataFrame. Args: input_doc (str): The string containing the table-like data to extract. column_list (list[str]): A list of column names to identify the columns in the table-like data. Returns: pandas.DataFrame: A DataFrame containing the extracted data from the input string. """ line: str columns = {} data = {} for line in input_doc.splitlines(): if len(columns) == 0 : # Find the line that contains the column names and replace bad column names if re.search("^\w", line): line = replace_bad_cols(line, column_list) # Find the start and end positions of each column name and store them in a dictionary columns_names = re.finditer(COLUMN_NAME_REGEX, line) for c in columns_names: columns[c.group("column_name")] = {"start": c.start(), "end": c.end()} data[c.group("column_name")] = [] continue elif len(line) < 2: continue # Check if we've reached the end of the table and return the data if re.search("\d+ records listed", line): return DataFrame(data) # Extract the data from each column based on the start and end positions for key, span in columns.items(): data[key].append(line[span["start"]:span["end"]].strip())