Compare commits
2 Commits
6eb57d7978
...
9ad5e9180c
| Author | SHA1 | Date |
|---|---|---|
|
|
9ad5e9180c | 3 years ago |
|
|
7ad4f76943 | 3 years ago |
@ -1,53 +0,0 @@ |
||||
write_dir = "Work" |
||||
DocNumFilter = [ |
||||
"p(oin)?ts", |
||||
"pool", |
||||
"promo", |
||||
"o(ver)?f(und)?", |
||||
"m(ar)?ke?t", |
||||
"title", |
||||
"adj", |
||||
"reg free", |
||||
"cma" |
||||
] |
||||
[ExcelColumns] |
||||
|
||||
[ExcelColumns.OB] |
||||
contract_number = "Contract" # 3070508-007 |
||||
onhold_amount = "CurrentOnHold" |
||||
install_date = "InstallDate" |
||||
|
||||
[ExcelColumns.GP] |
||||
contract_number = "Transaction Description" # 1234-56789 |
||||
onhold_amount = "Current Trx Amount" |
||||
doc_num = "Document Number" # 1-316141 HOLD |
||||
pur_order = "Purchase Order Number" # ABC123 |
||||
doc_type = "Document Type" # Invoice or Credit Memo |
||||
|
||||
|
||||
|
||||
|
||||
[logger] |
||||
version = 1 |
||||
|
||||
disable_existing_loggers = false |
||||
|
||||
[logger.formatters.custom] |
||||
format = "'%(asctime)s - %(module)s - %(levelname)s - %(message)s'" |
||||
|
||||
[logger.handlers.console] |
||||
class = "logging.StreamHandler" |
||||
level = "DEBUG" |
||||
formatter = "custom" |
||||
stream = "ext://sys.stdout" |
||||
|
||||
[logger.handlers.file] |
||||
class = "logging.FileHandler" |
||||
level = "DEBUG" |
||||
formatter = "custom" |
||||
filename = "on_hold.log" |
||||
|
||||
[logger.root] |
||||
level = "DEBUG" |
||||
handlers = ["console", "file"] |
||||
|
||||
@ -0,0 +1,22 @@ |
||||
version = 1 |
||||
|
||||
disable_existing_loggers = false |
||||
|
||||
[formatters.custom] |
||||
format = "'%(asctime)s - %(module)s - %(levelname)s - %(message)s'" |
||||
|
||||
[handlers.console] |
||||
class = "logging.StreamHandler" |
||||
level = "DEBUG" |
||||
formatter = "custom" |
||||
stream = "ext://sys.stdout" |
||||
|
||||
[handlers.file] |
||||
class = "logging.FileHandler" |
||||
level = "DEBUG" |
||||
formatter = "custom" |
||||
filename = "on_hold.log" |
||||
|
||||
[root] |
||||
level = "DEBUG" |
||||
handlers = ["console", "file"] |
||||
@ -0,0 +1,31 @@ |
||||
output_columns = [ |
||||
"contract_number", |
||||
"vendor_name", |
||||
"AppNum", # OB only |
||||
"DateBooked", # OB only |
||||
"Document Number",# GP Only |
||||
"Resolution", |
||||
"Notes" |
||||
# 'Source' added for 'no match' |
||||
] |
||||
|
||||
[gp_filters] |
||||
# These regex will be combined and with ORs and used to filer |
||||
# the document number column of the GP report |
||||
doc_num_filters = [ |
||||
"p(oin)?ts", |
||||
"pool", |
||||
"promo", |
||||
"o(ver)?f(und)?", |
||||
"m(ar)?ke?t", |
||||
"title", |
||||
"adj", |
||||
"reg free", |
||||
"cma" |
||||
] |
||||
po_filter = "^(?!.*cma(\\s|\\d)).*$" |
||||
|
||||
[shared_columns] |
||||
contract_number = { GP = "Transaction Description", OB = "Contract"} |
||||
onhold_amount = { GP = "Current Trx Amount", OB = "CurrentOnHold" } |
||||
vendor_name = { GP = "Vendor Name", OB = "DealerName"} |
||||
@ -0,0 +1,90 @@ |
||||
""" |
||||
Hold Reconciler is an application meant to help reconcile the differences in payments |
||||
that marked as on hold in Great Plains and OnBase. |
||||
|
||||
It takes a report csv from OnBase and a report from GreatPlains and checks them |
||||
against each other. It attempts to make them based on contract number and payment |
||||
amount, or just the contract number. |
||||
|
||||
It also does a lot of filtering for the Great Plains report to remove irrelevant data. |
||||
|
||||
*Last Updated: version 1.3* |
||||
*Originally developed in Spring of 2023 by Griffiths Lott (g@glott.me)* |
||||
""" |
||||
import re |
||||
from re import Pattern |
||||
import os |
||||
from os.path import basename |
||||
import glob |
||||
import logging |
||||
from pathlib import Path |
||||
from tomllib import load |
||||
from pandas import DataFrame, Series |
||||
from typing import TypeVar, Literal |
||||
|
||||
|
||||
import logging.config |
||||
from logging import getLogger |
||||
|
||||
logger = getLogger(__name__) |
||||
|
||||
CN_REGEX = re.compile(r"\d{7}(-\d{3})?") |
||||
|
||||
def setup_logging(): |
||||
""" |
||||
Sets up logging configuration from the TOML file. If the logging configuration fails to be loaded from the file, |
||||
a default logging configuration is used instead. |
||||
|
||||
Returns: |
||||
logging.Logger: The logger instance. |
||||
""" |
||||
with open("config_logger.toml", "rb") as f: |
||||
config_dict: dict = load(f) |
||||
try: |
||||
# Try to load logging configuration from the TOML file |
||||
logging.config.dictConfig(config_dict) |
||||
except Exception as e: |
||||
# If the logging configuration fails, use a default configuration and log the error |
||||
logger = logging.getLogger() |
||||
logger.setLevel(logging.DEBUG) |
||||
logger.warning("Failed setting up logger!") |
||||
logger.exception(e) |
||||
logger.warning(f"Config:\n{config_dict}") |
||||
return logger |
||||
|
||||
|
||||
def drop_unnamed(df: DataFrame, inplace: bool = True) -> DataFrame|None: |
||||
""" |
||||
Drops all Unnamed columns from a dataframe. |
||||
### CAUTION : This function acts *inplace* by deafult |
||||
(on the orignal dataframe, not a copy!) |
||||
""" |
||||
cols = [c for c in df.columns if "Unnamed" in c] |
||||
return df.drop(cols, axis=1, inplace=inplace) |
||||
|
||||
|
||||
def find_most_recent_file(folder_path: Path, file_pattern: Pattern) -> str: |
||||
""" |
||||
Given a folder path and a regular expression pattern, this function returns the path of the most recently modified |
||||
file in the folder that matches the pattern. |
||||
|
||||
Args: |
||||
folder_path (Path): A pathlib.Path object representing the folder to search. |
||||
file_pattern (Pattern): A regular expression pattern used to filter the files in the folder. |
||||
|
||||
Returns: |
||||
str: The path of the most recently modified file in the folder that matches the pattern. |
||||
""" |
||||
# Find all files in the folder that match the pattern |
||||
files = glob.glob(f"{folder_path}/*") |
||||
logger.debug(f"files: {files}") |
||||
|
||||
# Get the modification time of each file and filter to only those that match the pattern |
||||
file_times = [(os.path.getmtime(path), path) for path in files if re.match(file_pattern, basename(path))] |
||||
|
||||
# Sort the files by modification time (most recent first) |
||||
file_times.sort(reverse=True) |
||||
logger.debug(f"file times: {file_times}") |
||||
|
||||
# Return the path of the most recent file |
||||
return file_times[0][1] |
||||
@ -0,0 +1,136 @@ |
||||
""" |
||||
This is the main entry point for this application. It find the newest reports (GP & OB) |
||||
then utilizes the reconcile module to find the differences between them. The output is |
||||
saved as an excel file with todays date. |
||||
""" |
||||
# Custom module for reconciliation |
||||
from helpers import setup_logging, find_most_recent_file |
||||
from reports import OnBaseReport, GreatPlainsReport |
||||
|
||||
import pandas as pd |
||||
from pandas import DataFrame |
||||
import re |
||||
from re import Pattern |
||||
import logging |
||||
from tomllib import load |
||||
import logging.config |
||||
from datetime import datetime as dt |
||||
from openpyxl import load_workbook, Workbook |
||||
import pathlib |
||||
from pathlib import Path |
||||
|
||||
""" |
||||
[ ] Pull in past reconciliations to check against |
||||
[ ] Record reconciled transaction (connect with VBA) |
||||
[ ] Check GP against the database |
||||
[ ] Check OB against the database |
||||
[X] Add resolution column to error sheets |
||||
[ ] Add sheet for problem contractas already seen and 'resolved' |
||||
""" |
||||
|
||||
setup_logging() |
||||
logger = logging.getLogger(__name__) |
||||
logger.info(f"Logger started with level: {logger.level}") |
||||
|
||||
|
||||
def get_reports(work_dir: str, report_config: dict) -> tuple[pd.DataFrame|None, pd.DataFrame|None]: |
||||
""" |
||||
Given a dictionary of Excel configuration options, this function searches for the most recently modified GP and OB |
||||
Excel files in a "Work" folder and returns their corresponding dataframes. |
||||
|
||||
Args: |
||||
excelConfig (dict): A dictionary containing configuration options for the GP and OB Excel files. |
||||
|
||||
Returns: |
||||
tuple[pd.DataFrame|None, pd.DataFrame|None]: A tuple containing the OB and GP dataframes, respectively. |
||||
""" |
||||
|
||||
# Define regular expression patterns to match the GP and OB Excel files |
||||
gp_regex: Pattern = re.compile(".*gp.*\.xlsx$", re.IGNORECASE) |
||||
ob_regex: Pattern = re.compile(".*ob.*\.xlsx$", re.IGNORECASE) |
||||
|
||||
# Find the paths of the most recently modified GP and OB Excel files |
||||
gp_file_path = find_most_recent_file(work_dir, gp_regex) |
||||
logger.debug(f"gp_file_path: {gp_file_path}") |
||||
ob_file_path = find_most_recent_file(work_dir, ob_regex) |
||||
logger.debug(f"gp_file_path: {ob_file_path}") |
||||
|
||||
# Read the GP and OB Excel files into dataframes and check that each dataframe has the required columns |
||||
gp_xl = pd.ExcelFile(gp_file_path) |
||||
gp_req_cols = [col["GP"] for _, col in report_config["shared_columns"].items()] |
||||
logger.debug(f"GP_Req_cols: {gp_req_cols}") |
||||
gp_sheets = gp_xl.sheet_names |
||||
gp_dfs = pd.read_excel(gp_xl, sheet_name=gp_sheets) |
||||
for sheet in gp_dfs: |
||||
sheet_columns: list[str] = list(gp_dfs[sheet].columns) |
||||
logger.debug(f"gp ({sheet}) : {sheet_columns}") |
||||
logger.debug(f"Matches {[r in sheet_columns for r in gp_req_cols]}") |
||||
if all([r in sheet_columns for r in gp_req_cols]): |
||||
logger.debug("FOUND") |
||||
gp_df = gp_dfs[sheet] |
||||
break |
||||
|
||||
ob_xl = pd.ExcelFile(ob_file_path) |
||||
ob_req_cols = [col["OB"] for _, col in report_config["shared_columns"].items()] |
||||
ob_sheets = ob_xl.sheet_names |
||||
ob_dfs = pd.read_excel(ob_xl, sheet_name=ob_sheets) |
||||
for sheet in ob_dfs: |
||||
sheet_columns: list[str] = list(ob_dfs[sheet].columns) |
||||
if all([r in sheet_columns for r in ob_req_cols]): |
||||
ob_df = ob_dfs[sheet] |
||||
break |
||||
|
||||
return ob_df, gp_df |
||||
|
||||
|
||||
def main() -> int: |
||||
""" |
||||
This is the main function for the script. It reads configuration options from a TOML file, reads in the GP and OB |
||||
Excel files, performs data reconciliation and analysis, and writes the results to a new Excel file. |
||||
|
||||
Returns: |
||||
int: 0 if the script executes successfully. |
||||
""" |
||||
# Read the configuration options from a TOML file |
||||
with open("config_reports.toml", "rb") as f: |
||||
reports_config: dict = load(f) |
||||
logger.debug(f"Reports Config: {reports_config}") |
||||
|
||||
# Get the GP and OB dataframes from the Excel files |
||||
ob_df, gp_df = get_reports("Work", reports_config) |
||||
assert not ob_df.empty, "OB Data empty!" |
||||
assert not gp_df.empty, "GP Data empty!" |
||||
|
||||
obr: OnBaseReport = OnBaseReport(ob_df, reports_config) |
||||
gpr: GreatPlainsReport = GreatPlainsReport(gp_df, reports_config) |
||||
|
||||
overdue: DataFrame = obr.get_overdue() |
||||
|
||||
no_match, amt_mismatch = obr.reconcile(gpr) |
||||
|
||||
# Write the results to a new Excel file |
||||
output_name: Path = Path(f"Reconciled Holds [{dt.now().strftime('%m-%d-%Y')}].xlsx") |
||||
output_path: Path = Path("./Work", output_name) |
||||
with pd.ExcelWriter(output_path, mode='w') as writer: |
||||
no_match.to_excel(writer, sheet_name="No Match", |
||||
index=False, freeze_panes=(1,3) |
||||
) |
||||
amt_mismatch.to_excel(writer, sheet_name="Amount Mismatch", |
||||
index=False, freeze_panes=(1,3) |
||||
) |
||||
overdue.to_excel(writer, sheet_name="Overdue", index=False) |
||||
|
||||
wb: Workbook = load_workbook(output_path) |
||||
for sheet in ["No Match", "Amount Mismatch"]: |
||||
ws = wb[sheet] |
||||
ws.column_dimensions['A'].hidden = True |
||||
ws.column_dimensions['B'].hidden = True |
||||
wb.save(output_path) |
||||
|
||||
return 0 |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
print("Starting") |
||||
main() |
||||
print("Completed") |
||||
@ -0,0 +1,123 @@ |
||||
""" |
||||
Classes and functions to parse completed reconciliation reports and remember |
||||
the resolutions of contracts. |
||||
|
||||
Also provides a way for the reconciler to check hold against previously |
||||
resolved holds. |
||||
|
||||
*Last Updated: version 1.3 |
||||
""" |
||||
from helpers import drop_unnamed, setup_logging |
||||
from ghlib.database.database_manager import SQLiteManager |
||||
|
||||
from pandas import DataFrame, Series, read_sql_query, read_excel, concat |
||||
from logging import getLogger |
||||
from dataclasses import dataclass |
||||
from hashlib import md5 |
||||
|
||||
setup_logging() |
||||
logger = getLogger(__name__) |
||||
|
||||
|
||||
def hash_cols(row: Series, cols_to_hash: list[str]) -> str: |
||||
md5_hash = md5() |
||||
md5_hash.update((''.join(row[col] for col in cols_to_hash)).encode('utf-8')) |
||||
return md5_hash.hexdigest() |
||||
|
||||
|
||||
def save_rec(resolved_dataframes: list[DataFrame]): |
||||
""" |
||||
#TODO Actually handle this... |
||||
""" |
||||
#raise NotImplementedError("You were too lazy to fix this after the rewrite. FIX PLZ!") |
||||
sqlManager: SQLiteManager = SQLiteManager("OnHold.db") |
||||
with sqlManager.get_session() as session: |
||||
conn = session.connection() |
||||
|
||||
rdf: DataFrame |
||||
for rdf in resolved_dataframes: |
||||
cols: list[str] = rdf.columns.to_list() |
||||
if "onhold_amount" in cols: |
||||
logger.debug(f"Found 'onhold_amount' in rdf: no_match dataframe") |
||||
# Split the on_hold col to normalize with amount mismatch |
||||
rdf["onhold_amount_GP"] = rdf.apply(lambda row: |
||||
row.onhold_amount if row.Source == "GP" else None |
||||
) |
||||
rdf["onhold_amount_OB"] = rdf.apply(lambda row: |
||||
row.onhold_amount if row.Source == "OB" else None |
||||
) |
||||
else: |
||||
logger.debug(f"No 'onhold_amount' col found in rdf: amount_mismatch dataframe") |
||||
# Create a unified column for index |
||||
rdf["Indentifier"] = rdf.apply(lambda row: |
||||
hash_cols(row, ["ID_OB","ID_GP"]), axis=1 |
||||
) |
||||
|
||||
|
||||
rec_cols: list[str] = [ |
||||
"Indentifier", |
||||
"ID_GP", |
||||
"ID_OB", |
||||
"Hide Next Month", |
||||
"Resolution" |
||||
] |
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def get_prev_reconciled(contracts: list[str]) -> DataFrame: |
||||
""" |
||||
Get a DataFrame of previously reconciled contracts from an SQLite database. |
||||
|
||||
Args: |
||||
contracts (list[str]): A list of contract numbers to check for previously reconciled contracts. |
||||
|
||||
Returns: |
||||
DataFrame: A DataFrame of previously reconciled contracts, or an empty DataFrame if none are found. |
||||
""" |
||||
# Create a DB manager |
||||
sqlManager: SQLiteManager = SQLiteManager("OnHold.db") |
||||
|
||||
# Create a temp table to hold this batches contract numbers |
||||
# this table will be cleared when sqlManager goes out of scope |
||||
temp_table_statement = """ |
||||
CREATE TEMPORARY TABLE CUR_CONTRACTS (contract_number VARCHAR(11)); |
||||
""" |
||||
sqlManager.execute(temp_table_statement) |
||||
|
||||
# Insert the current contracts into the temp table |
||||
insert_contracts = f""" |
||||
INSERT INTO CUR_CONTRACTS (contract_number) VALUES |
||||
{', '.join([f"('{cn}')" for cn in contracts])}; |
||||
""" |
||||
sqlManager.execute(insert_contracts) |
||||
|
||||
# Select previously resolved contracts |
||||
res_query = """ |
||||
SELECT r.* |
||||
FROM Resolutions r |
||||
JOIN CUR_CONTRACTS t |
||||
ON r.contract_number = t.contract_number; |
||||
""" |
||||
resolved: DataFrame = sqlManager.execute(res_query, as_dataframe=True) |
||||
return resolved |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
import argparse |
||||
from logging import DEBUG |
||||
logger.setLevel(DEBUG) |
||||
|
||||
parser = argparse.ArgumentParser( |
||||
prog="HoldReconcilerRecord", |
||||
) |
||||
parser.add_argument("-i", "--input") |
||||
args = parser.parse_args() |
||||
|
||||
# No Match |
||||
no_match: DataFrame = read_excel(args.input, sheet_name="No Match") |
||||
# Amount Mismatch |
||||
amt_mm: DataFrame = read_excel(args.input, sheet_name="Amount Mismatch") |
||||
|
||||
save_rec(resolved_dataframes=[no_match, amt_mm]) |
||||
@ -1,251 +0,0 @@ |
||||
import pandas as pd |
||||
from pandas import DataFrame |
||||
from datetime import datetime as dt |
||||
import datetime |
||||
import re |
||||
from typing import Literal |
||||
import logging |
||||
|
||||
|
||||
logger = logging.getLogger(__name__) |
||||
|
||||
|
||||
def get_overdue(onbase_df: DataFrame, onbase_excel_config) -> DataFrame: |
||||
""" |
||||
Given a DataFrame containing OnBase installation data and a dictionary containing the OnBase Excel configuration, |
||||
this function returns a DataFrame containing the rows from `onbase_df` that have an installation date that is before |
||||
the current date. |
||||
|
||||
Args: |
||||
onbase_df (pd.DataFrame): A pandas DataFrame containing OnBase installation data. |
||||
onbase_excel_config (dict): A dictionary containing the OnBase Excel configuration. |
||||
|
||||
Returns: |
||||
pd.DataFrame: A pandas DataFrame containing the rows from `onbase_df` that have an installation date that is before |
||||
the current date. |
||||
""" |
||||
id_col = onbase_excel_config["install_date"] |
||||
onbase_df[id_col] = pd.to_datetime(onbase_df[id_col]) |
||||
onbase_df[id_col].fillna(pd.NaT, inplace=True) |
||||
return onbase_df[onbase_df[id_col].dt.date < datetime.date.today()] |
||||
|
||||
|
||||
def filter_gp(gp_dataframe: pd.DataFrame, full_config: dict) -> pd.DataFrame: |
||||
""" |
||||
Given a pandas DataFrame containing GP data and a dictionary containing the GP configuration, this function |
||||
filters out rows from the DataFrame that are not needed for further analysis based on certain criteria. |
||||
|
||||
Args: |
||||
gp_dataframe (pd.DataFrame): A pandas DataFrame containing GP data. |
||||
gp_config (dict): A dictionary containing the GP configuration. |
||||
|
||||
Returns: |
||||
pd.DataFrame: A pandas DataFrame containing the filtered GP data. |
||||
""" |
||||
|
||||
# Excludes anything that contains cma with a space or digit following it |
||||
# CMA23532 would be excluded but 'John Locman' would be allowed |
||||
GOOD_PO_NUM = re.compile(r"^(?!.*cma(\s|\d)).*$", re.IGNORECASE) |
||||
|
||||
gp_config: dict = full_config["ExcelColumns"]["GP"] |
||||
doc_num_regexes: list[str] = full_config["DocNumFilter"] |
||||
|
||||
bad_doc_num = '' |
||||
rx : str |
||||
for rx in doc_num_regexes: |
||||
bad_doc_num += f"({rx})|" |
||||
bad_doc_num = re.compile(bad_doc_num[:-1], re.IGNORECASE) |
||||
logger.debug(f"Doc # filter: {bad_doc_num}") |
||||
# Create a filter/mask to use on the data |
||||
mask = ( |
||||
(gp_dataframe[gp_config['doc_type']] == "Invoice") & |
||||
(gp_dataframe[gp_config['pur_order']].str.contains(GOOD_PO_NUM)) |
||||
) |
||||
|
||||
# Get the rows to drop based on the filter/mask |
||||
rows_to_drop = gp_dataframe[~mask].index |
||||
|
||||
# Drop the rows and return the filtered DataFrame |
||||
filtered_df = gp_dataframe.drop(rows_to_drop, inplace=False) |
||||
|
||||
mask = filtered_df[gp_config['doc_num']].str.contains(bad_doc_num) |
||||
rows_to_drop = filtered_df[mask].index |
||||
|
||||
return filtered_df.drop(rows_to_drop, inplace=False) |
||||
|
||||
|
||||
def create_transaction_df(dataframe: pd.DataFrame, source: Literal["GP", "OB"], excelConfig: dict): |
||||
""" |
||||
Given a pandas DataFrame containing transaction data, the source of the data ("GP" or "OB"), and a dictionary |
||||
containing the Excel configuration, this function creates a new DataFrame with columns for the contract number, |
||||
the amount on hold, a unique transaction ID, and the source of the data. |
||||
|
||||
Args: |
||||
dataframe (pd.DataFrame): A pandas DataFrame containing transaction data. |
||||
source (Literal["GP", "OB"]): The source of the data ("GP" or "OB"). |
||||
excelConfig (dict): A dictionary containing the Excel configuration. |
||||
|
||||
Returns: |
||||
pd.DataFrame: A pandas DataFrame containing the contract number, amount on hold, transaction ID, and data source |
||||
for each transaction in the original DataFrame. |
||||
""" |
||||
column_config: dict = excelConfig[source] |
||||
logger.debug(f"column_config: {column_config}") |
||||
# Create a new DataFrame with the contract number and on-hold amount columns |
||||
transactions = dataframe[[column_config["contract_number"], column_config["onhold_amount"]]].copy() |
||||
|
||||
# Rename the columns to standardize the column names |
||||
transactions.rename(columns={ |
||||
column_config["contract_number"]: "contract_number", |
||||
column_config["onhold_amount"]: "onhold_amount", |
||||
}, inplace=True) |
||||
|
||||
# Convert the on-hold amount column to float format and round to two decimal places |
||||
transactions["onhold_amount"] = transactions["onhold_amount"].astype(float).round(2) |
||||
|
||||
# Use regex to extract the contract number from the column values and create a new column with the standardized format |
||||
CN_REGEX = re.compile(r"\d{7}(-\d{3})?") |
||||
transactions["contract_number"] = transactions["contract_number"].apply( |
||||
lambda cn: str(cn) if not re.search(CN_REGEX, str(cn)) |
||||
else re.search(CN_REGEX, str(cn)).group(0) |
||||
) |
||||
|
||||
# Create a new column with a unique transaction ID |
||||
transactions["ID"] = transactions["contract_number"] +'_'+\ |
||||
transactions["onhold_amount"].astype(str) |
||||
|
||||
# Create a new column with the data source |
||||
transactions["Source"] = source |
||||
|
||||
# Return the new DataFrame with the contract number, on-hold amount, transaction ID, and data source columns |
||||
return transactions |
||||
|
||||
|
||||
def get_no_match(obt_df: pd.DataFrame, gpt_df: pd.DataFrame): |
||||
""" |
||||
Given two pandas DataFrames containing transaction data from OBT and GPT, respectively, this function returns a new |
||||
DataFrame containing only the transactions that do not have a match in both the OBT and GPT DataFrames. |
||||
|
||||
Args: |
||||
obt_df (pd.DataFrame): A pandas DataFrame containing transaction data from OBT. |
||||
gpt_df (pd.DataFrame): A pandas DataFrame containing transaction data from GPT. |
||||
|
||||
Returns: |
||||
pd.DataFrame: A pandas DataFrame containing the transactions that do not have a match in both the OBT and GPT |
||||
DataFrames. |
||||
""" |
||||
# Merge the two DataFrames using the contract number as the join key |
||||
merged_df = pd.merge( |
||||
obt_df, gpt_df, |
||||
how="outer", |
||||
on=["contract_number"], |
||||
suffixes=("_ob", "_gp") |
||||
) |
||||
|
||||
# Filter the merged DataFrame to include only the transactions that do not have a match in both OBT and GPT |
||||
no_match = merged_df.loc[ |
||||
(merged_df["Source_ob"].isna()) | |
||||
(merged_df["Source_gp"].isna()) |
||||
] |
||||
|
||||
# Fill in missing values and drop unnecessary columns |
||||
no_match["Source"] = no_match["Source_ob"].fillna("GP") |
||||
no_match["onhold_amount"] = no_match["onhold_amount_ob"].fillna(no_match["onhold_amount_gp"]) |
||||
no_match.drop(columns=[ |
||||
"ID_ob", "ID_gp", |
||||
"onhold_amount_ob", "onhold_amount_gp", |
||||
"Source_ob", "Source_gp" |
||||
], |
||||
inplace=True) |
||||
|
||||
# Reorder and return the new DataFrame with the source, contract number, and on-hold amount columns |
||||
no_match = no_match[ |
||||
[ "Source", "contract_number", "onhold_amount"] |
||||
] |
||||
|
||||
return no_match |
||||
|
||||
|
||||
def get_not_full_match(obt_df: pd.DataFrame, gpt_df: pd.DataFrame): |
||||
""" |
||||
Given two pandas DataFrames containing transaction data from OBT and GPT, respectively, this function returns two new |
||||
DataFrames. The first DataFrame contains the transactions that have a full match on both the OBT and GPT DataFrames, |
||||
and the second DataFrame contains the transactions that do not have a full match. |
||||
|
||||
Args: |
||||
obt_df (pd.DataFrame): A pandas DataFrame containing transaction data from OBT. |
||||
gpt_df (pd.DataFrame): A pandas DataFrame containing transaction data from GPT. |
||||
|
||||
Returns: |
||||
tuple(pd.DataFrame, pd.DataFrame): A tuple of two DataFrames. The first DataFrame contains the transactions that |
||||
have a full match on both the OBT and GPT DataFrames, and the second DataFrame contains the transactions that do |
||||
not have a full match. |
||||
""" |
||||
# Combine the two DataFrames using an outer join on the contract number and on-hold amount |
||||
merged_df = pd.merge( |
||||
obt_df, gpt_df, |
||||
how="outer", |
||||
on=["ID", "contract_number", "onhold_amount"], |
||||
suffixes=("_ob", "_gp") |
||||
) |
||||
|
||||
# Filter the merged DataFrame to include only the transactions that have a full match in both OBT and GPT |
||||
full_matched = merged_df.dropna(subset=["Source_ob", "Source_gp"]) |
||||
full_matched.drop(columns=["Source_ob", "Source_gp"], inplace=True) |
||||
|
||||
# Create a boolean mask for the rows to drop in full_matched |
||||
mask = merged_df["ID"].isin(full_matched["ID"]) |
||||
# Use the mask to remove the selected rows and create a new DataFrame for not full match |
||||
not_full_match = merged_df[~mask] |
||||
# This includes items that DO match contracts, but not amounts |
||||
# It can have multiple items from one source with the same contract number |
||||
|
||||
# Create a new column with the data source, using OBT as the default and GPT as backup if missing |
||||
not_full_match["Source"] = not_full_match["Source_ob"].fillna(not_full_match["Source_gp"]) |
||||
|
||||
# Drop the redundant Source columns |
||||
not_full_match.drop(columns=["Source_ob", "Source_gp"], inplace=True) |
||||
|
||||
# Reorder and return the new DataFrame with the source, contract number, and on-hold amount columns |
||||
not_full_match = not_full_match[ |
||||
[ "Source", "contract_number", "onhold_amount"] |
||||
] |
||||
|
||||
# Return the two DataFrames |
||||
return full_matched, not_full_match |
||||
|
||||
|
||||
def get_contract_match(not_full_match: pd.DataFrame) -> pd.DataFrame: |
||||
""" |
||||
Given a pandas DataFrame containing transactions that do not have a full match between OBT and GPT, this function |
||||
returns a new DataFrame containing only the transactions that have a matching contract number in both OBT and GPT. |
||||
|
||||
Args: |
||||
not_full_match (pd.DataFrame): A pandas DataFrame containing transactions that do not have a full match between |
||||
OBT and GPT. |
||||
|
||||
Returns: |
||||
pd.DataFrame: A pandas DataFrame containing only the transactions that have a matching contract number in both |
||||
OBT and GPT. |
||||
""" |
||||
# Filter the not_full_match DataFrame by source |
||||
ob_df = not_full_match[not_full_match["Source"] == "OB"] |
||||
gp_df = not_full_match[not_full_match["Source"] == "GP"] |
||||
|
||||
# Merge the two filtered DataFrames on the contract number |
||||
contract_match = pd.merge( |
||||
ob_df, gp_df, |
||||
how="inner", |
||||
on=["contract_number"], |
||||
suffixes=("_ob", "_gp") |
||||
) |
||||
|
||||
# Fill in missing values in the Source column and drop the redundant columns |
||||
contract_match.drop(columns=["Source_ob", "Source_gp"], inplace=True) |
||||
|
||||
# Reorder and return the new DataFrame with the source, contract number, and on-hold amount columns |
||||
contract_match = contract_match[ |
||||
[ "contract_number", "onhold_amount_ob", "onhold_amount_gp"] |
||||
] |
||||
|
||||
return contract_match |
||||
@ -1,21 +0,0 @@ |
||||
from pandas import DataFrame, Series, read_sql_query, read_excel |
||||
import sqlite3 as sqll |
||||
import sqlalchemy as sqa |
||||
import argparse |
||||
|
||||
def drop_unnamed(df: DataFrame): |
||||
cols = [c for c in df.columns if "Unnamed" in c] |
||||
df.drop(cols, axis=1, inplace=True) |
||||
|
||||
parser = argparse.ArgumentParser( |
||||
prog="HoldReconcilerRecord", |
||||
) |
||||
parser.add_argument("-i", "--input") |
||||
args = parser.parse_args() |
||||
# Resolution col |
||||
|
||||
no_match: DataFrame = read_excel(args.input, sheet_name="No Match") |
||||
amt_mm: DataFrame = read_excel(args.input, sheet_name="Amount Mismatch") |
||||
drop_unnamed(no_match) |
||||
drop_unnamed(amt_mm) |
||||
print(no_match) |
||||
@ -1,191 +0,0 @@ |
||||
import pandas as pd |
||||
from pandas import DataFrame, Series |
||||
import re |
||||
from re import Pattern |
||||
import os |
||||
from os.path import basename |
||||
import glob |
||||
import logging |
||||
from pathlib import Path |
||||
from tomllib import load |
||||
import logging.config |
||||
from datetime import datetime as dt |
||||
|
||||
""" |
||||
[ ] Pull in past reconciliations to check against |
||||
[ ] Record reconciled transaction (connect with VBA) |
||||
[ ] Check GP against the database |
||||
[ ] Check OB against the database |
||||
[ ] Add resolution column to error sheets |
||||
""" |
||||
|
||||
# Custom module for reconciliation |
||||
from rec_lib import get_contract_match, get_no_match, \ |
||||
get_not_full_match, get_overdue, filter_gp, create_transaction_df |
||||
|
||||
def setup_logging(): |
||||
""" |
||||
Sets up logging configuration from the TOML file. If the logging configuration fails to be loaded from the file, |
||||
a default logging configuration is used instead. |
||||
|
||||
Returns: |
||||
logging.Logger: The logger instance. |
||||
""" |
||||
with open("config.toml", "rb") as f: |
||||
config_dict: dict = load(f) |
||||
try: |
||||
# Try to load logging configuration from the TOML file |
||||
logging.config.dictConfig(config_dict["logger"]) |
||||
except Exception as e: |
||||
# If the logging configuration fails, use a default configuration and log the error |
||||
logger = logging.getLogger() |
||||
logger.setLevel(logging.DEBUG) |
||||
logger.warning("Failed setting up logger!") |
||||
logger.exception(e) |
||||
logger.warning(f"Config:\n{config_dict}") |
||||
return logger |
||||
|
||||
|
||||
setup_logging() |
||||
logger = logging.getLogger(__name__) |
||||
logger.info(f"Logger started with level: {logger.level}") |
||||
|
||||
def find_most_recent_file(folder_path: Path, file_pattern: Pattern) -> str: |
||||
""" |
||||
Given a folder path and a regular expression pattern, this function returns the path of the most recently modified |
||||
file in the folder that matches the pattern. |
||||
|
||||
Args: |
||||
folder_path (Path): A pathlib.Path object representing the folder to search. |
||||
file_pattern (Pattern): A regular expression pattern used to filter the files in the folder. |
||||
|
||||
Returns: |
||||
str: The path of the most recently modified file in the folder that matches the pattern. |
||||
""" |
||||
# Find all files in the folder that match the pattern |
||||
files = glob.glob(f"{folder_path}/*") |
||||
logger.debug(f"files: {files}") |
||||
|
||||
# Get the modification time of each file and filter to only those that match the pattern |
||||
file_times = [(os.path.getmtime(path), path) for path in files if re.match(file_pattern, basename(path))] |
||||
|
||||
# Sort the files by modification time (most recent first) |
||||
file_times.sort(reverse=True) |
||||
logger.debug(f"file times: {file_times}") |
||||
|
||||
# Return the path of the most recent file |
||||
return file_times[0][1] |
||||
|
||||
|
||||
def check_sheet(df_cols: list[str], excel_col_config: dict) -> bool: |
||||
""" |
||||
Given a list of column names and a dictionary of column name configurations, this function checks if the required |
||||
columns are present in the list of column names. |
||||
|
||||
Args: |
||||
df_cols (list[str]): A list of column names. |
||||
excel_col_config (dict): A dictionary of column name configurations. |
||||
|
||||
Returns: |
||||
bool: True if all of the required columns are present in the list of column names, False otherwise. |
||||
""" |
||||
# Get the list of required columns from the column configuration dictionary |
||||
required_cols: list[str] = list(excel_col_config.values()) |
||||
# Check if all of the required columns are present in the list of column names |
||||
return all([col in df_cols for col in required_cols]) |
||||
|
||||
|
||||
def get_dataframes(work_dir: str, excelConfig: dict) -> tuple[pd.DataFrame|None, pd.DataFrame|None]: |
||||
""" |
||||
Given a dictionary of Excel configuration options, this function searches for the most recently modified GP and OB |
||||
Excel files in a "Work" folder and returns their corresponding dataframes. |
||||
|
||||
Args: |
||||
excelConfig (dict): A dictionary containing configuration options for the GP and OB Excel files. |
||||
|
||||
Returns: |
||||
tuple[pd.DataFrame|None, pd.DataFrame|None]: A tuple containing the OB and GP dataframes, respectively. |
||||
""" |
||||
|
||||
# Define regular expression patterns to match the GP and OB Excel files |
||||
gp_regex: Pattern = re.compile(".*gp.*\.xlsx$", re.IGNORECASE) |
||||
ob_regex: Pattern = re.compile(".*ob.*\.xlsx$", re.IGNORECASE) |
||||
|
||||
# Find the paths of the most recently modified GP and OB Excel files |
||||
gp_file_path = find_most_recent_file(work_dir, gp_regex) |
||||
logger.debug(f"gp_file_path: {gp_file_path}") |
||||
ob_file_path = find_most_recent_file(work_dir, ob_regex) |
||||
logger.debug(f"gp_file_path: {ob_file_path}") |
||||
|
||||
# Read the GP and OB Excel files into dataframes and check that each dataframe has the required columns |
||||
gp_xl = pd.ExcelFile(gp_file_path) |
||||
gp_config = excelConfig["GP"] |
||||
gp_sheets = gp_xl.sheet_names |
||||
gp_dfs = pd.read_excel(gp_xl, sheet_name=gp_sheets) |
||||
for sheet in gp_dfs: |
||||
if check_sheet(gp_dfs[sheet].columns, gp_config): |
||||
gp_df = gp_dfs[sheet] |
||||
break |
||||
|
||||
ob_xl = pd.ExcelFile(ob_file_path) |
||||
ob_config = excelConfig["OB"] |
||||
ob_sheets = ob_xl.sheet_names |
||||
ob_dfs = pd.read_excel(ob_xl, sheet_name=ob_sheets) |
||||
for sheet in ob_dfs: |
||||
if check_sheet(ob_dfs[sheet].columns, ob_config): |
||||
ob_df = ob_dfs[sheet] |
||||
break |
||||
|
||||
return ob_df, gp_df |
||||
|
||||
|
||||
def main() -> int: |
||||
""" |
||||
This is the main function for the script. It reads configuration options from a TOML file, reads in the GP and OB |
||||
Excel files, performs data reconciliation and analysis, and writes the results to a new Excel file. |
||||
|
||||
Returns: |
||||
int: 0 if the script executes successfully. |
||||
""" |
||||
# Read the configuration options from a TOML file |
||||
with open("config.toml", "rb") as f: |
||||
config_dict: dict = load(f) |
||||
logger.debug(f"Config: {config_dict}") |
||||
|
||||
excelConfig: dict = config_dict["ExcelColumns"] |
||||
|
||||
# Get the GP and OB dataframes from the Excel files |
||||
ob_df, gp_df = get_dataframes(config_dict["write_dir"] ,excelConfig) |
||||
assert not ob_df.empty, "OB Data empty!" |
||||
assert not gp_df.empty, "GP Data empty!" |
||||
|
||||
# Filter the GP dataframe to include only relevant transactions |
||||
fgp_df: DataFrame = filter_gp(gp_df, config_dict) |
||||
# Get the overdue transactions from the OB dataframe |
||||
overdue: DataFrame = get_overdue(ob_df, excelConfig["OB"]) |
||||
|
||||
# Create transaction dataframes for the GP and OB dataframes |
||||
ob_transactions: DataFrame = create_transaction_df(ob_df, 'OB', excelConfig) |
||||
gp_transactions: DataFrame = create_transaction_df(fgp_df, 'GP', excelConfig) |
||||
|
||||
# Get the transactions that do not have matches in both the GP and OB dataframes |
||||
no_match: DataFrame = get_no_match(ob_transactions, gp_transactions) |
||||
|
||||
# Get the transactions that have matches in both the GP and OB dataframes but have amount mismatches |
||||
full_match, not_full_match = get_not_full_match(ob_transactions, gp_transactions) |
||||
only_contracts_match: DataFrame = get_contract_match(not_full_match) |
||||
|
||||
# Write the results to a new Excel file |
||||
with pd.ExcelWriter(f"{config_dict['write_dir']}/Reconciled Holds [{dt.now().strftime('%m-%d-%Y')}].xlsx", mode='w') as writer: |
||||
full_match.to_excel(writer,sheet_name="FULL", index=False) |
||||
no_match.to_excel(writer, sheet_name="No Match", index=False) |
||||
only_contracts_match.to_excel(writer, sheet_name="Amount Mismatch", index=False) |
||||
overdue.to_excel(writer, sheet_name="Overdue", index=False) |
||||
|
||||
return 0 |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
print("Starting") |
||||
main() |
||||
print("Completed") |
||||
@ -0,0 +1,271 @@ |
||||
from pandas import DataFrame, merge, to_datetime, NaT, concat, Series |
||||
from numpy import concatenate |
||||
from abc import ABC, abstractmethod |
||||
from logging import getLogger |
||||
import re |
||||
from typing import Literal |
||||
import datetime |
||||
from copy import deepcopy |
||||
|
||||
from helpers import CN_REGEX, drop_unnamed |
||||
from memory import get_prev_reconciled |
||||
|
||||
logger = getLogger(__name__) |
||||
|
||||
|
||||
class HoldReport(ABC): |
||||
|
||||
source = "" |
||||
|
||||
def __init__(self, dataframe: DataFrame, reports_config: dict) -> None: |
||||
self.config = reports_config |
||||
drop_unnamed(dataframe) |
||||
self.df = dataframe |
||||
self.prev_rec = None |
||||
self._normalize() |
||||
self._previsouly_resolved() |
||||
|
||||
|
||||
def _normalize(self): |
||||
|
||||
# Rename the columns to standardize the column names |
||||
self.df.rename( columns= { unique_cols[self.source] : common_col |
||||
for common_col, unique_cols in self.config["shared_columns"].items() |
||||
}, inplace=True) |
||||
|
||||
# Convert the on-hold amount column to float format and round to two decimal places |
||||
self.df["onhold_amount"] = self.df["onhold_amount"].astype(float).round(2) |
||||
|
||||
# Use regex to extract the contract number from the column values and create a new column with the standardized format |
||||
self.df["contract_number"] = self.df["contract_number"].apply( |
||||
lambda cn: str(cn) if not re.search(CN_REGEX, str(cn)) |
||||
else re.search(CN_REGEX, str(cn)).group(0) |
||||
) |
||||
|
||||
# Create a new column with a unique transaction ID |
||||
self.df["ID"] = self.df["contract_number"] +'_'+\ |
||||
self.df["onhold_amount"].astype(str) |
||||
|
||||
# Create a new column with the data source |
||||
self.df["Source"] = self.source |
||||
|
||||
|
||||
def _previsouly_resolved(self): |
||||
""" |
||||
""" |
||||
current_contracts: list[str] = self.df["contract_number"] |
||||
|
||||
prev_recd: DataFrame = get_prev_reconciled(contracts=current_contracts) |
||||
if not prev_recd: |
||||
logger.info("No previously reconciled!") |
||||
self.df = self._add_work_columns(self.df) |
||||
return |
||||
self.prev_rec = prev_recd |
||||
|
||||
start_size = self.df.shape[0] |
||||
logger.debug(f"Report DF: \n{self.df}") |
||||
logger.debug(f"prev_rec: \n{prev_recd}") |
||||
|
||||
source_id = f"ID_{self.source}" |
||||
self.df[source_id] = self.df["ID"] |
||||
self.df = merge( |
||||
self.df, |
||||
prev_recd, |
||||
how="left", |
||||
on= source_id, |
||||
suffixes=("_cur", "_prev") |
||||
) |
||||
#self.df.to_excel(f"merged_df_{self.source}.xlsx") |
||||
|
||||
# Drop anything that should be ignored |
||||
self.df = self.df[self.df["Hide Next Month"] != True] |
||||
logger.info(f"Prev res added:\n{self.df}") |
||||
|
||||
col_to_drop = [] |
||||
for c in self.df.keys().to_list(): |
||||
logger.debug(f"{c=}") |
||||
if "_prev" in c or "ID_" in c: |
||||
logger.debug(f"Found '_prev' in {c}") |
||||
col_to_drop.append(c) |
||||
else: |
||||
logger.debug(f"{c} is a good col!") |
||||
#col_to_drop.extend([c for c in self.df.keys().to_list() if '_prev' in c]) |
||||
logger.debug(f"{col_to_drop=}") |
||||
self.df.drop( |
||||
columns= col_to_drop, |
||||
inplace=True |
||||
) |
||||
# Restandardize |
||||
self.df.rename(columns={"contract_number_cur": "contract_number"}, inplace=True) |
||||
end_size = self.df.shape[0] |
||||
logger.info(f"Reduced df by {start_size-end_size}") |
||||
|
||||
def _remove_full_matches(self, other: 'HoldReport'): |
||||
""" |
||||
Removes any contracts that match both contract number and hold amount. |
||||
These do not need to be reconciled. |
||||
|
||||
This id done 'in place' to both dataframes |
||||
""" |
||||
filter_id_match: DataFrame = self.df[~(self.df["ID"].isin(other.df["ID"]))] |
||||
other.df: DataFrame = other.df[~(other.df["ID"].isin(self.df["ID"]))] |
||||
self.df = filter_id_match |
||||
self.combined_missing: DataFrame = concat([self.df, other.df], ignore_index=True) |
||||
self.combined_missing.to_excel("ALL MISSING.xlsx") |
||||
logger.debug(f"Combined Missing:\n{self.combined_missing}") |
||||
logger.info(f"Payments with errors: {self.combined_missing.shape[0]}") |
||||
|
||||
@staticmethod |
||||
def _created_combined_col(column: str, target_df: DataFrame, sources: tuple[str, str]) -> DataFrame : |
||||
""" |
||||
Creates a new column by filling empty columns of this source, with the matching column from another source |
||||
""" |
||||
this, that = sources |
||||
target_df[column] = target_df[f"{column}_{this}"].fillna( |
||||
target_df[f"{column}_{that}"] |
||||
) |
||||
return target_df |
||||
|
||||
|
||||
def _requires_rec(self, other: 'HoldReport') -> DataFrame: |
||||
""" |
||||
To be run after full matches have been re |
||||
""" |
||||
|
||||
# Merge the two filtered DataFrames on the contract number |
||||
contract_match = merge( |
||||
self.df, other.df, |
||||
how="inner", |
||||
on=["contract_number"], |
||||
suffixes=('_'+self.source, '_'+other.source) |
||||
) |
||||
|
||||
#contract_match.to_excel("CONTRACT_MATCH.xlsx") |
||||
|
||||
for col in ["vendor_name", "Resolution", "Notes"]: |
||||
self._created_combined_col(col, contract_match, (self.source, other.source)) |
||||
|
||||
logger.debug(f"_requires_rec | contract_match:\n{contract_match.columns} ({contract_match.shape})") |
||||
|
||||
no_match: DataFrame = self.combined_missing[~( |
||||
self.combined_missing["contract_number"].isin( |
||||
contract_match["contract_number"] |
||||
)) |
||||
] |
||||
no_match[f"ID_{self.source}"] = no_match.apply(lambda row: |
||||
row["ID"] if row["Source"] == self.source else None |
||||
, axis=1) |
||||
no_match[f"ID_{other.source}"] = no_match.apply(lambda row: |
||||
row["ID"] if row["Source"] == other.source else None |
||||
, axis=1) |
||||
|
||||
logger.debug(f"_requires_rec | no_match:\n{no_match.columns} ({no_match.shape})") |
||||
|
||||
return contract_match, no_match |
||||
|
||||
@staticmethod |
||||
def _add_work_columns(df: DataFrame) -> DataFrame: |
||||
""" |
||||
Add empty columns to the dataframe to faciliate working through the report. |
||||
""" |
||||
logger.debug("Adding work columns!") |
||||
df_cols: list[str] = df.columns.to_list() |
||||
WORK_COLS = ["Hide Next Month","Resolution"] |
||||
for col in WORK_COLS: |
||||
if col not in df_cols: |
||||
df[col] = '' |
||||
return df |
||||
|
||||
def reconcile(self, other: 'HoldReport') -> tuple[DataFrame]: |
||||
""" |
||||
""" |
||||
self._remove_full_matches(other) |
||||
all_prev_reced = concat([self.prev_rec, other.prev_rec],ignore_index=True) |
||||
logger.debug(f"Removed matches:\n{self.df}") |
||||
|
||||
|
||||
amount_mismatch, no_match = self._requires_rec(other) |
||||
|
||||
logger.debug(f"reconcile | no_match unaltered\n{no_match.columns} ({no_match.shape})") |
||||
logger.debug(f"reconcile | am_mm unaltered:\n{amount_mismatch.columns} ({amount_mismatch.shape})") |
||||
|
||||
columns: list[str] = ["ID_GP", "ID_OB"] |
||||
columns.extend(self.config["output_columns"]) |
||||
|
||||
nm_cols:list[str] = deepcopy(columns) |
||||
nm_cols.insert(3,"onhold_amount") |
||||
nm_cols.insert(4,"Source") |
||||
|
||||
columns.insert(3,"onhold_amount_GP") |
||||
columns.insert(4, "onhold_amount_OB") |
||||
|
||||
# Select and reorder columns |
||||
no_match = no_match[ |
||||
nm_cols |
||||
] |
||||
|
||||
amount_mismatch = amount_mismatch[ |
||||
columns |
||||
] |
||||
logger.info(f"no_match: {no_match.shape[0]}") |
||||
logger.info(f"am_mm: {amount_mismatch.shape[0]}") |
||||
return no_match, amount_mismatch |
||||
|
||||
|
||||
class OnBaseReport(HoldReport): |
||||
|
||||
source = "OB" |
||||
|
||||
def get_overdue(self) -> DataFrame: |
||||
""" |
||||
""" |
||||
self.df["InstallDate"] = to_datetime(self.df["InstallDate"]) |
||||
self.df["InstallDate"].fillna(NaT, inplace=True) |
||||
return self.df[self.df["InstallDate"].dt.date < datetime.date.today()] |
||||
|
||||
|
||||
class GreatPlainsReport(HoldReport): |
||||
|
||||
source = "GP" |
||||
|
||||
def __init__(self, dataframe: DataFrame, report_config: dict) -> None: |
||||
|
||||
self._filter( |
||||
gp_report_df= dataframe, |
||||
doc_num_filters= report_config["gp_filters"]["doc_num_filters"], |
||||
good_po_num_regex= report_config["gp_filters"]["po_filter"] |
||||
) |
||||
super().__init__(dataframe, report_config) |
||||
|
||||
@staticmethod |
||||
def _filter(gp_report_df: DataFrame, |
||||
doc_num_filters: list[str], good_po_num_regex: str) -> DataFrame: |
||||
|
||||
GOOD_PO_NUM = re.compile(good_po_num_regex, re.IGNORECASE) |
||||
|
||||
bad_doc_num = '' |
||||
rx : str |
||||
for rx in doc_num_filters: |
||||
bad_doc_num += f"({rx})|" |
||||
bad_doc_num = re.compile(bad_doc_num[:-1], re.IGNORECASE) |
||||
|
||||
# Create a mask/filter that will keep rows that match these |
||||
# requirments |
||||
keep_mask = ( |
||||
(gp_report_df["Document Type"] == "Invoice") & |
||||
(gp_report_df["Purchase Order Number"].str.contains(GOOD_PO_NUM)) |
||||
) |
||||
|
||||
# Get the rows that DO NOT fit the keep_mask |
||||
rows_to_drop = gp_report_df[~keep_mask].index |
||||
# Drop the rows to filter |
||||
gp_report_df.drop(rows_to_drop, inplace=True) |
||||
|
||||
# Create a filter to remove rows that meet this requirment |
||||
# Making this a negative in the keep mask is more trouble than |
||||
# it's worth |
||||
remove_mask = gp_report_df["Document Number"].str.contains(bad_doc_num) |
||||
rows_to_drop = gp_report_df[remove_mask].index |
||||
gp_report_df.drop(rows_to_drop, inplace=True) |
||||
|
||||
return gp_report_df |
||||
@ -0,0 +1 @@ |
||||
2.0 |
||||
Loading…
Reference in new issue