A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/window/moments/conftest.py

79 lines
1.7 KiB

import itertools
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
notna,
)
def create_series():
return [
Series(dtype=np.float64, name="a"),
Series([np.nan] * 5),
Series([1.0] * 5),
Series(range(5, 0, -1)),
Series(range(5)),
Series([np.nan, 1.0, np.nan, 1.0, 1.0]),
Series([np.nan, 1.0, np.nan, 2.0, 3.0]),
Series([np.nan, 1.0, np.nan, 3.0, 2.0]),
]
def create_dataframes():
return [
DataFrame(columns=["a", "a"]),
DataFrame(np.arange(15).reshape((5, 3)), columns=["a", "a", 99]),
] + [DataFrame(s) for s in create_series()]
def is_constant(x):
values = x.values.ravel("K")
return len(set(values[notna(values)])) == 1
@pytest.fixture(
params=(
obj
for obj in itertools.chain(create_series(), create_dataframes())
if is_constant(obj)
),
scope="module",
)
def consistent_data(request):
return request.param
@pytest.fixture(params=create_series())
def series_data(request):
return request.param
@pytest.fixture(params=itertools.chain(create_series(), create_dataframes()))
def all_data(request):
"""
Test:
- Empty Series / DataFrame
- All NaN
- All consistent value
- Monotonically decreasing
- Monotonically increasing
- Monotonically consistent with NaNs
- Monotonically increasing with NaNs
- Monotonically decreasing with NaNs
"""
return request.param
@pytest.fixture(params=[(1, 0), (5, 1)])
def rolling_consistency_cases(request):
"""window, min_periods"""
return request.param
@pytest.fixture(params=[0, 2])
def min_periods(request):
return request.param