A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/window/conftest.py

261 lines
5.9 KiB

from datetime import (
datetime,
timedelta,
)
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Series,
bdate_range,
to_datetime,
)
@pytest.fixture(params=[True, False])
def raw(request):
"""raw keyword argument for rolling.apply"""
return request.param
@pytest.fixture(
params=[
"triang",
"blackman",
"hamming",
"bartlett",
"bohman",
"blackmanharris",
"nuttall",
"barthann",
]
)
def win_types(request):
return request.param
@pytest.fixture(params=["kaiser", "gaussian", "general_gaussian", "exponential"])
def win_types_special(request):
return request.param
@pytest.fixture(
params=[
"sum",
"mean",
"median",
"max",
"min",
"var",
"std",
"kurt",
"skew",
"count",
"sem",
]
)
def arithmetic_win_operators(request):
return request.param
@pytest.fixture(
params=[
["sum", {}],
["mean", {}],
["median", {}],
["max", {}],
["min", {}],
["var", {}],
["var", {"ddof": 0}],
["std", {}],
["std", {"ddof": 0}],
]
)
def arithmetic_numba_supported_operators(request):
return request.param
@pytest.fixture(params=["right", "left", "both", "neither"])
def closed(request):
return request.param
@pytest.fixture(params=[True, False])
def center(request):
return request.param
@pytest.fixture(params=[None, 1])
def min_periods(request):
return request.param
@pytest.fixture(params=["single", "table"])
def method(request):
"""method keyword in rolling/expanding/ewm constructor"""
return request.param
@pytest.fixture(params=[True, False])
def parallel(request):
"""parallel keyword argument for numba.jit"""
return request.param
# Can parameterize nogil & nopython over True | False, but limiting per
# https://github.com/pandas-dev/pandas/pull/41971#issuecomment-860607472
@pytest.fixture(params=[False])
def nogil(request):
"""nogil keyword argument for numba.jit"""
return request.param
@pytest.fixture(params=[True])
def nopython(request):
"""nopython keyword argument for numba.jit"""
return request.param
@pytest.fixture(params=[True, False])
def adjust(request):
"""adjust keyword argument for ewm"""
return request.param
@pytest.fixture(params=[True, False])
def ignore_na(request):
"""ignore_na keyword argument for ewm"""
return request.param
@pytest.fixture(params=[pytest.param("numba", marks=td.skip_if_no("numba")), "cython"])
def engine(request):
"""engine keyword argument for rolling.apply"""
return request.param
@pytest.fixture(
params=[
pytest.param(("numba", True), marks=td.skip_if_no("numba")),
("cython", True),
("cython", False),
]
)
def engine_and_raw(request):
"""engine and raw keyword arguments for rolling.apply"""
return request.param
@pytest.fixture
def times_frame():
"""Frame for testing times argument in EWM groupby."""
return DataFrame(
{
"A": ["a", "b", "c", "a", "b", "c", "a", "b", "c", "a"],
"B": [0, 0, 0, 1, 1, 1, 2, 2, 2, 3],
"C": to_datetime(
[
"2020-01-01",
"2020-01-01",
"2020-01-01",
"2020-01-02",
"2020-01-10",
"2020-01-22",
"2020-01-03",
"2020-01-23",
"2020-01-23",
"2020-01-04",
]
),
}
)
@pytest.fixture(params=["1 day", timedelta(days=1)])
def halflife_with_times(request):
"""Halflife argument for EWM when times is specified."""
return request.param
@pytest.fixture(
params=[
"object",
"category",
"int8",
"int16",
"int32",
"int64",
"uint8",
"uint16",
"uint32",
"uint64",
"float16",
"float32",
"float64",
"m8[ns]",
"M8[ns]",
"datetime64[ns, UTC]",
]
)
def dtypes(request):
"""Dtypes for window tests"""
return request.param
@pytest.fixture(
params=[
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 0]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 1]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", "C"]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1.0, 0]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0.0, 1]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", 1]),
DataFrame([[2.0, 4.0], [1.0, 2.0], [5.0, 2.0], [8.0, 1.0]], columns=[1, 0.0]),
DataFrame([[2, 4.0], [1, 2.0], [5, 2.0], [8, 1.0]], columns=[0, 1.0]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1.0]], columns=[1.0, "X"]),
]
)
def pairwise_frames(request):
"""Pairwise frames test_pairwise"""
return request.param
@pytest.fixture
def pairwise_target_frame():
"""Pairwise target frame for test_pairwise"""
return DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0, 1])
@pytest.fixture
def pairwise_other_frame():
"""Pairwise other frame for test_pairwise"""
return DataFrame(
[[None, 1, 1], [None, 1, 2], [None, 3, 2], [None, 8, 1]],
columns=["Y", "Z", "X"],
)
@pytest.fixture
def series():
"""Make mocked series as fixture."""
arr = np.random.randn(100)
locs = np.arange(20, 40)
arr[locs] = np.NaN
series = Series(arr, index=bdate_range(datetime(2009, 1, 1), periods=100))
return series
@pytest.fixture
def frame():
"""Make mocked frame as fixture."""
return DataFrame(
np.random.randn(100, 10),
index=bdate_range(datetime(2009, 1, 1), periods=100),
columns=np.arange(10),
)