A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/tools/test_to_timedelta.py

276 lines
9.7 KiB

from datetime import (
time,
timedelta,
)
import numpy as np
import pytest
from pandas.errors import OutOfBoundsTimedelta
import pandas as pd
from pandas import (
Series,
TimedeltaIndex,
isna,
to_timedelta,
)
import pandas._testing as tm
from pandas.core.arrays import TimedeltaArray
class TestTimedeltas:
@pytest.mark.parametrize("readonly", [True, False])
def test_to_timedelta_readonly(self, readonly):
# GH#34857
arr = np.array([], dtype=object)
if readonly:
arr.setflags(write=False)
result = to_timedelta(arr)
expected = to_timedelta([])
tm.assert_index_equal(result, expected)
def test_to_timedelta_null(self):
result = to_timedelta(["", ""])
assert isna(result).all()
def test_to_timedelta_same_np_timedelta64(self):
# pass thru
result = to_timedelta(np.array([np.timedelta64(1, "s")]))
expected = pd.Index(np.array([np.timedelta64(1, "s")]))
tm.assert_index_equal(result, expected)
def test_to_timedelta_series(self):
# Series
expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)])
result = to_timedelta(Series(["1d", "1days 00:00:01"]))
tm.assert_series_equal(result, expected)
def test_to_timedelta_units(self):
# with units
result = TimedeltaIndex(
[np.timedelta64(0, "ns"), np.timedelta64(10, "s").astype("m8[ns]")]
)
expected = to_timedelta([0, 10], unit="s")
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"dtype, unit",
[
["int64", "s"],
["int64", "m"],
["int64", "h"],
["timedelta64[s]", "s"],
["timedelta64[D]", "D"],
],
)
def test_to_timedelta_units_dtypes(self, dtype, unit):
# arrays of various dtypes
arr = np.array([1] * 5, dtype=dtype)
result = to_timedelta(arr, unit=unit)
expected = TimedeltaIndex([np.timedelta64(1, unit)] * 5)
tm.assert_index_equal(result, expected)
def test_to_timedelta_oob_non_nano(self):
arr = np.array([pd.NaT.value + 1], dtype="timedelta64[s]")
msg = r"Out of bounds for nanosecond timedelta64\[s\] -9223372036854775807"
with pytest.raises(OutOfBoundsTimedelta, match=msg):
to_timedelta(arr)
with pytest.raises(OutOfBoundsTimedelta, match=msg):
TimedeltaIndex(arr)
with pytest.raises(OutOfBoundsTimedelta, match=msg):
TimedeltaArray._from_sequence(arr)
@pytest.mark.parametrize(
"arg", [np.arange(10).reshape(2, 5), pd.DataFrame(np.arange(10).reshape(2, 5))]
)
@pytest.mark.parametrize("errors", ["ignore", "raise", "coerce"])
def test_to_timedelta_dataframe(self, arg, errors):
# GH 11776
with pytest.raises(TypeError, match="1-d array"):
to_timedelta(arg, errors=errors)
def test_to_timedelta_invalid_errors(self):
# bad value for errors parameter
msg = "errors must be one of"
with pytest.raises(ValueError, match=msg):
to_timedelta(["foo"], errors="never")
@pytest.mark.parametrize("arg", [[1, 2], 1])
def test_to_timedelta_invalid_unit(self, arg):
# these will error
msg = "invalid unit abbreviation: foo"
with pytest.raises(ValueError, match=msg):
to_timedelta(arg, unit="foo")
def test_to_timedelta_time(self):
# time not supported ATM
msg = (
"Value must be Timedelta, string, integer, float, timedelta or convertible"
)
with pytest.raises(ValueError, match=msg):
to_timedelta(time(second=1))
assert to_timedelta(time(second=1), errors="coerce") is pd.NaT
def test_to_timedelta_bad_value(self):
msg = "Could not convert 'foo' to NumPy timedelta"
with pytest.raises(ValueError, match=msg):
to_timedelta(["foo", "bar"])
def test_to_timedelta_bad_value_coerce(self):
tm.assert_index_equal(
TimedeltaIndex([pd.NaT, pd.NaT]),
to_timedelta(["foo", "bar"], errors="coerce"),
)
tm.assert_index_equal(
TimedeltaIndex(["1 day", pd.NaT, "1 min"]),
to_timedelta(["1 day", "bar", "1 min"], errors="coerce"),
)
def test_to_timedelta_invalid_errors_ignore(self):
# gh-13613: these should not error because errors='ignore'
invalid_data = "apple"
assert invalid_data == to_timedelta(invalid_data, errors="ignore")
invalid_data = ["apple", "1 days"]
tm.assert_numpy_array_equal(
np.array(invalid_data, dtype=object),
to_timedelta(invalid_data, errors="ignore"),
)
invalid_data = pd.Index(["apple", "1 days"])
tm.assert_index_equal(invalid_data, to_timedelta(invalid_data, errors="ignore"))
invalid_data = Series(["apple", "1 days"])
tm.assert_series_equal(
invalid_data, to_timedelta(invalid_data, errors="ignore")
)
@pytest.mark.parametrize(
"val, warning",
[
("1M", FutureWarning),
("1 M", FutureWarning),
("1Y", FutureWarning),
("1 Y", FutureWarning),
("1y", FutureWarning),
("1 y", FutureWarning),
("1m", None),
("1 m", None),
("1 day", None),
("2day", None),
],
)
def test_unambiguous_timedelta_values(self, val, warning):
# GH36666 Deprecate use of strings denoting units with 'M', 'Y', 'm' or 'y'
# in pd.to_timedelta
msg = "Units 'M', 'Y' and 'y' do not represent unambiguous timedelta"
with tm.assert_produces_warning(warning, match=msg, check_stacklevel=False):
to_timedelta(val)
def test_to_timedelta_via_apply(self):
# GH 5458
expected = Series([np.timedelta64(1, "s")])
result = Series(["00:00:01"]).apply(to_timedelta)
tm.assert_series_equal(result, expected)
result = Series([to_timedelta("00:00:01")])
tm.assert_series_equal(result, expected)
def test_to_timedelta_inference_without_warning(self):
# GH#41731 inference produces a warning in the Series constructor,
# but _not_ in to_timedelta
vals = ["00:00:01", pd.NaT]
with tm.assert_produces_warning(None):
result = to_timedelta(vals)
expected = TimedeltaIndex([pd.Timedelta(seconds=1), pd.NaT])
tm.assert_index_equal(result, expected)
def test_to_timedelta_on_missing_values(self):
# GH5438
timedelta_NaT = np.timedelta64("NaT")
actual = to_timedelta(Series(["00:00:01", np.nan]))
expected = Series(
[np.timedelta64(1000000000, "ns"), timedelta_NaT], dtype="<m8[ns]"
)
tm.assert_series_equal(actual, expected)
with tm.assert_produces_warning(FutureWarning, match="Inferring timedelta64"):
ser = Series(["00:00:01", pd.NaT])
assert ser.dtype == "m8[ns]"
actual = to_timedelta(ser)
tm.assert_series_equal(actual, expected)
@pytest.mark.parametrize("val", [np.nan, pd.NaT])
def test_to_timedelta_on_missing_values_scalar(self, val):
actual = to_timedelta(val)
assert actual.value == np.timedelta64("NaT").astype("int64")
def test_to_timedelta_float(self):
# https://github.com/pandas-dev/pandas/issues/25077
arr = np.arange(0, 1, 1e-6)[-10:]
result = to_timedelta(arr, unit="s")
expected_asi8 = np.arange(999990000, 10**9, 1000, dtype="int64")
tm.assert_numpy_array_equal(result.asi8, expected_asi8)
def test_to_timedelta_coerce_strings_unit(self):
arr = np.array([1, 2, "error"], dtype=object)
result = to_timedelta(arr, unit="ns", errors="coerce")
expected = to_timedelta([1, 2, pd.NaT], unit="ns")
tm.assert_index_equal(result, expected)
def test_to_timedelta_ignore_strings_unit(self):
arr = np.array([1, 2, "error"], dtype=object)
result = to_timedelta(arr, unit="ns", errors="ignore")
tm.assert_numpy_array_equal(result, arr)
@pytest.mark.parametrize(
"expected_val, result_val", [[timedelta(days=2), 2], [None, None]]
)
def test_to_timedelta_nullable_int64_dtype(self, expected_val, result_val):
# GH 35574
expected = Series([timedelta(days=1), expected_val])
result = to_timedelta(Series([1, result_val], dtype="Int64"), unit="days")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
("input", "expected"),
[
("8:53:08.71800000001", "8:53:08.718"),
("8:53:08.718001", "8:53:08.718001"),
("8:53:08.7180000001", "8:53:08.7180000001"),
("-8:53:08.71800000001", "-8:53:08.718"),
("8:53:08.7180000089", "8:53:08.718000008"),
],
)
@pytest.mark.parametrize("func", [pd.Timedelta, to_timedelta])
def test_to_timedelta_precision_over_nanos(self, input, expected, func):
# GH: 36738
expected = pd.Timedelta(expected)
result = func(input)
assert result == expected
def test_to_timedelta_zerodim(self, fixed_now_ts):
# ndarray.item() incorrectly returns int for dt64[ns] and td64[ns]
dt64 = fixed_now_ts.to_datetime64()
arg = np.array(dt64)
msg = (
"Value must be Timedelta, string, integer, float, timedelta "
"or convertible, not datetime64"
)
with pytest.raises(ValueError, match=msg):
to_timedelta(arg)
arg2 = arg.view("m8[ns]")
result = to_timedelta(arg2)
assert isinstance(result, pd.Timedelta)
assert result.value == dt64.view("i8")