A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/strings/conftest.py

177 lines
5.1 KiB

import numpy as np
import pytest
from pandas import Series
from pandas.core import strings as strings
_any_string_method = [
("cat", (), {"sep": ","}),
("cat", (Series(list("zyx")),), {"sep": ",", "join": "left"}),
("center", (10,), {}),
("contains", ("a",), {}),
("count", ("a",), {}),
("decode", ("UTF-8",), {}),
("encode", ("UTF-8",), {}),
("endswith", ("a",), {}),
("endswith", ("a",), {"na": True}),
("endswith", ("a",), {"na": False}),
("extract", ("([a-z]*)",), {"expand": False}),
("extract", ("([a-z]*)",), {"expand": True}),
("extractall", ("([a-z]*)",), {}),
("find", ("a",), {}),
("findall", ("a",), {}),
("get", (0,), {}),
# because "index" (and "rindex") fail intentionally
# if the string is not found, search only for empty string
("index", ("",), {}),
("join", (",",), {}),
("ljust", (10,), {}),
("match", ("a",), {}),
("fullmatch", ("a",), {}),
("normalize", ("NFC",), {}),
("pad", (10,), {}),
("partition", (" ",), {"expand": False}),
("partition", (" ",), {"expand": True}),
("repeat", (3,), {}),
("replace", ("a", "z"), {}),
("rfind", ("a",), {}),
("rindex", ("",), {}),
("rjust", (10,), {}),
("rpartition", (" ",), {"expand": False}),
("rpartition", (" ",), {"expand": True}),
("slice", (0, 1), {}),
("slice_replace", (0, 1, "z"), {}),
("split", (" ",), {"expand": False}),
("split", (" ",), {"expand": True}),
("startswith", ("a",), {}),
("startswith", ("a",), {"na": True}),
("startswith", ("a",), {"na": False}),
("removeprefix", ("a",), {}),
("removesuffix", ("a",), {}),
# translating unicode points of "a" to "d"
("translate", ({97: 100},), {}),
("wrap", (2,), {}),
("zfill", (10,), {}),
] + list(
zip(
[
# methods without positional arguments: zip with empty tuple and empty dict
"capitalize",
"cat",
"get_dummies",
"isalnum",
"isalpha",
"isdecimal",
"isdigit",
"islower",
"isnumeric",
"isspace",
"istitle",
"isupper",
"len",
"lower",
"lstrip",
"partition",
"rpartition",
"rsplit",
"rstrip",
"slice",
"slice_replace",
"split",
"strip",
"swapcase",
"title",
"upper",
"casefold",
],
[()] * 100,
[{}] * 100,
)
)
ids, _, _ = zip(*_any_string_method) # use method name as fixture-id
missing_methods = {
f for f in dir(strings.StringMethods) if not f.startswith("_")
} - set(ids)
# test that the above list captures all methods of StringMethods
assert not missing_methods
@pytest.fixture(params=_any_string_method, ids=ids)
def any_string_method(request):
"""
Fixture for all public methods of `StringMethods`
This fixture returns a tuple of the method name and sample arguments
necessary to call the method.
Returns
-------
method_name : str
The name of the method in `StringMethods`
args : tuple
Sample values for the positional arguments
kwargs : dict
Sample values for the keyword arguments
Examples
--------
>>> def test_something(any_string_method):
... s = Series(['a', 'b', np.nan, 'd'])
...
... method_name, args, kwargs = any_string_method
... method = getattr(s.str, method_name)
... # will not raise
... method(*args, **kwargs)
"""
return request.param
# subset of the full set from pandas/conftest.py
_any_allowed_skipna_inferred_dtype = [
("string", ["a", np.nan, "c"]),
("bytes", [b"a", np.nan, b"c"]),
("empty", [np.nan, np.nan, np.nan]),
("empty", []),
("mixed-integer", ["a", np.nan, 2]),
]
ids, _ = zip(*_any_allowed_skipna_inferred_dtype) # use inferred type as id
@pytest.fixture(params=_any_allowed_skipna_inferred_dtype, ids=ids)
def any_allowed_skipna_inferred_dtype(request):
"""
Fixture for all (inferred) dtypes allowed in StringMethods.__init__
The covered (inferred) types are:
* 'string'
* 'empty'
* 'bytes'
* 'mixed'
* 'mixed-integer'
Returns
-------
inferred_dtype : str
The string for the inferred dtype from _libs.lib.infer_dtype
values : np.ndarray
An array of object dtype that will be inferred to have
`inferred_dtype`
Examples
--------
>>> import pandas._libs.lib as lib
>>>
>>> def test_something(any_allowed_skipna_inferred_dtype):
... inferred_dtype, values = any_allowed_skipna_inferred_dtype
... # will pass
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
...
... # constructor for .str-accessor will also pass
... Series(values).str
"""
inferred_dtype, values = request.param
values = np.array(values, dtype=object) # object dtype to avoid casting
# correctness of inference tested in tests/dtypes/test_inference.py
return inferred_dtype, values