A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/series/test_unary.py

52 lines
1.6 KiB

import pytest
from pandas import Series
import pandas._testing as tm
class TestSeriesUnaryOps:
# __neg__, __pos__, __invert__
def test_neg(self):
ser = tm.makeStringSeries()
ser.name = "series"
tm.assert_series_equal(-ser, -1 * ser)
def test_invert(self):
ser = tm.makeStringSeries()
ser.name = "series"
tm.assert_series_equal(-(ser < 0), ~(ser < 0))
@pytest.mark.parametrize(
"source, neg_target, abs_target",
[
([1, 2, 3], [-1, -2, -3], [1, 2, 3]),
([1, 2, None], [-1, -2, None], [1, 2, None]),
],
)
def test_all_numeric_unary_operators(
self, any_numeric_ea_dtype, source, neg_target, abs_target
):
# GH38794
dtype = any_numeric_ea_dtype
ser = Series(source, dtype=dtype)
neg_result, pos_result, abs_result = -ser, +ser, abs(ser)
if dtype.startswith("U"):
neg_target = -Series(source, dtype=dtype)
else:
neg_target = Series(neg_target, dtype=dtype)
abs_target = Series(abs_target, dtype=dtype)
tm.assert_series_equal(neg_result, neg_target)
tm.assert_series_equal(pos_result, ser)
tm.assert_series_equal(abs_result, abs_target)
@pytest.mark.parametrize("op", ["__neg__", "__abs__"])
def test_unary_float_op_mask(self, float_ea_dtype, op):
dtype = float_ea_dtype
ser = Series([1.1, 2.2, 3.3], dtype=dtype)
result = getattr(ser, op)()
target = result.copy(deep=True)
ser[0] = None
tm.assert_series_equal(result, target)