A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/series/test_ufunc.py

445 lines
15 KiB

from collections import deque
import string
import numpy as np
import pytest
from pandas.core.dtypes.common import is_dtype_equal
import pandas as pd
import pandas._testing as tm
from pandas.arrays import SparseArray
UNARY_UFUNCS = [np.positive, np.floor, np.exp]
BINARY_UFUNCS = [np.add, np.logaddexp] # dunder op
SPARSE = [True, False]
SPARSE_IDS = ["sparse", "dense"]
SHUFFLE = [True, False]
@pytest.fixture
def arrays_for_binary_ufunc():
"""
A pair of random, length-100 integer-dtype arrays, that are mostly 0.
"""
a1 = np.random.randint(0, 10, 100, dtype="int64")
a2 = np.random.randint(0, 10, 100, dtype="int64")
a1[::3] = 0
a2[::4] = 0
return a1, a2
@pytest.mark.parametrize("ufunc", UNARY_UFUNCS)
@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS)
def test_unary_ufunc(ufunc, sparse):
# Test that ufunc(pd.Series) == pd.Series(ufunc)
arr = np.random.randint(0, 10, 10, dtype="int64")
arr[::2] = 0
if sparse:
arr = SparseArray(arr, dtype=pd.SparseDtype("int64", 0))
index = list(string.ascii_letters[:10])
name = "name"
series = pd.Series(arr, index=index, name=name)
result = ufunc(series)
expected = pd.Series(ufunc(arr), index=index, name=name)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ufunc", BINARY_UFUNCS)
@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS)
@pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"])
def test_binary_ufunc_with_array(flip, sparse, ufunc, arrays_for_binary_ufunc):
# Test that ufunc(pd.Series(a), array) == pd.Series(ufunc(a, b))
a1, a2 = arrays_for_binary_ufunc
if sparse:
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0))
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0))
name = "name" # op(pd.Series, array) preserves the name.
series = pd.Series(a1, name=name)
other = a2
array_args = (a1, a2)
series_args = (series, other) # ufunc(series, array)
if flip:
array_args = reversed(array_args)
series_args = reversed(series_args) # ufunc(array, series)
expected = pd.Series(ufunc(*array_args), name=name)
result = ufunc(*series_args)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ufunc", BINARY_UFUNCS)
@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS)
@pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"])
def test_binary_ufunc_with_index(flip, sparse, ufunc, arrays_for_binary_ufunc):
# Test that
# * func(pd.Series(a), pd.Series(b)) == pd.Series(ufunc(a, b))
# * ufunc(Index, pd.Series) dispatches to pd.Series (returns a pd.Series)
a1, a2 = arrays_for_binary_ufunc
if sparse:
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0))
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0))
name = "name" # op(pd.Series, array) preserves the name.
series = pd.Series(a1, name=name)
warn = None if not sparse else FutureWarning
with tm.assert_produces_warning(warn):
other = pd.Index(a2, name=name).astype("int64")
array_args = (a1, a2)
series_args = (series, other) # ufunc(series, array)
if flip:
array_args = reversed(array_args)
series_args = reversed(series_args) # ufunc(array, series)
expected = pd.Series(ufunc(*array_args), name=name)
result = ufunc(*series_args)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ufunc", BINARY_UFUNCS)
@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS)
@pytest.mark.parametrize("shuffle", [True, False], ids=["unaligned", "aligned"])
@pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"])
def test_binary_ufunc_with_series(
flip, shuffle, sparse, ufunc, arrays_for_binary_ufunc
):
# Test that
# * func(pd.Series(a), pd.Series(b)) == pd.Series(ufunc(a, b))
# with alignment between the indices
a1, a2 = arrays_for_binary_ufunc
if sparse:
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0))
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0))
name = "name" # op(pd.Series, array) preserves the name.
series = pd.Series(a1, name=name)
other = pd.Series(a2, name=name)
idx = np.random.permutation(len(a1))
if shuffle:
other = other.take(idx)
if flip:
index = other.align(series)[0].index
else:
index = series.align(other)[0].index
else:
index = series.index
array_args = (a1, a2)
series_args = (series, other) # ufunc(series, array)
if flip:
array_args = tuple(reversed(array_args))
series_args = tuple(reversed(series_args)) # ufunc(array, series)
expected = pd.Series(ufunc(*array_args), index=index, name=name)
result = ufunc(*series_args)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ufunc", BINARY_UFUNCS)
@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS)
@pytest.mark.parametrize("flip", [True, False])
def test_binary_ufunc_scalar(ufunc, sparse, flip, arrays_for_binary_ufunc):
# Test that
# * ufunc(pd.Series, scalar) == pd.Series(ufunc(array, scalar))
# * ufunc(pd.Series, scalar) == ufunc(scalar, pd.Series)
arr, _ = arrays_for_binary_ufunc
if sparse:
arr = SparseArray(arr)
other = 2
series = pd.Series(arr, name="name")
series_args = (series, other)
array_args = (arr, other)
if flip:
series_args = tuple(reversed(series_args))
array_args = tuple(reversed(array_args))
expected = pd.Series(ufunc(*array_args), name="name")
result = ufunc(*series_args)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ufunc", [np.divmod]) # TODO: np.modf, np.frexp
@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS)
@pytest.mark.parametrize("shuffle", SHUFFLE)
@pytest.mark.filterwarnings("ignore:divide by zero:RuntimeWarning")
def test_multiple_output_binary_ufuncs(
ufunc, sparse, shuffle, arrays_for_binary_ufunc, request
):
# Test that
# the same conditions from binary_ufunc_scalar apply to
# ufuncs with multiple outputs.
a1, a2 = arrays_for_binary_ufunc
# work around https://github.com/pandas-dev/pandas/issues/26987
a1[a1 == 0] = 1
a2[a2 == 0] = 1
if sparse:
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0))
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0))
s1 = pd.Series(a1)
s2 = pd.Series(a2)
if shuffle:
# ensure we align before applying the ufunc
s2 = s2.sample(frac=1)
expected = ufunc(a1, a2)
assert isinstance(expected, tuple)
result = ufunc(s1, s2)
assert isinstance(result, tuple)
tm.assert_series_equal(result[0], pd.Series(expected[0]))
tm.assert_series_equal(result[1], pd.Series(expected[1]))
@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS)
def test_multiple_output_ufunc(sparse, arrays_for_binary_ufunc):
# Test that the same conditions from unary input apply to multi-output
# ufuncs
arr, _ = arrays_for_binary_ufunc
if sparse:
arr = SparseArray(arr)
series = pd.Series(arr, name="name")
result = np.modf(series)
expected = np.modf(arr)
assert isinstance(result, tuple)
assert isinstance(expected, tuple)
tm.assert_series_equal(result[0], pd.Series(expected[0], name="name"))
tm.assert_series_equal(result[1], pd.Series(expected[1], name="name"))
@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS)
@pytest.mark.parametrize("ufunc", BINARY_UFUNCS)
def test_binary_ufunc_drops_series_name(ufunc, sparse, arrays_for_binary_ufunc):
# Drop the names when they differ.
a1, a2 = arrays_for_binary_ufunc
s1 = pd.Series(a1, name="a")
s2 = pd.Series(a2, name="b")
result = ufunc(s1, s2)
assert result.name is None
def test_object_series_ok():
class Dummy:
def __init__(self, value):
self.value = value
def __add__(self, other):
return self.value + other.value
arr = np.array([Dummy(0), Dummy(1)])
ser = pd.Series(arr)
tm.assert_series_equal(np.add(ser, ser), pd.Series(np.add(ser, arr)))
tm.assert_series_equal(np.add(ser, Dummy(1)), pd.Series(np.add(ser, Dummy(1))))
@pytest.fixture(
params=[
pd.array([1, 3, 2], dtype=np.int64),
pd.array([1, 3, 2], dtype="Int64"),
pd.array([1, 3, 2], dtype="Float32"),
pd.array([1, 10, 2], dtype="Sparse[int]"),
pd.to_datetime(["2000", "2010", "2001"]),
pd.to_datetime(["2000", "2010", "2001"]).tz_localize("CET"),
pd.to_datetime(["2000", "2010", "2001"]).to_period(freq="D"),
pd.to_timedelta(["1 Day", "3 Days", "2 Days"]),
pd.IntervalIndex([pd.Interval(0, 1), pd.Interval(2, 3), pd.Interval(1, 2)]),
],
ids=lambda x: str(x.dtype),
)
def values_for_np_reduce(request):
# min/max tests assume that these are monotonic increasing
return request.param
class TestNumpyReductions:
# TODO: cases with NAs, axis kwarg for DataFrame
def test_multiply(self, values_for_np_reduce, box_with_array, request):
box = box_with_array
values = values_for_np_reduce
warn = None
if is_dtype_equal(values.dtype, "Sparse[int]") and box is pd.Index:
warn = FutureWarning
msg = "passing a SparseArray to pd.Index"
with tm.assert_produces_warning(warn, match=msg):
obj = box(values)
if isinstance(values, pd.core.arrays.SparseArray) and box is not pd.Index:
mark = pytest.mark.xfail(reason="SparseArray has no 'mul'")
request.node.add_marker(mark)
if values.dtype.kind in "iuf":
result = np.multiply.reduce(obj)
if box is pd.DataFrame:
expected = obj.prod(numeric_only=False)
tm.assert_series_equal(result, expected)
elif box is pd.Index:
# Int64Index, Index has no 'prod'
expected = obj._values.prod()
assert result == expected
else:
expected = obj.prod()
assert result == expected
else:
msg = "|".join(
[
"does not support reduction",
"unsupported operand type",
"ufunc 'multiply' cannot use operands",
]
)
with pytest.raises(TypeError, match=msg):
np.multiply.reduce(obj)
def test_add(self, values_for_np_reduce, box_with_array):
box = box_with_array
values = values_for_np_reduce
warn = None
if is_dtype_equal(values.dtype, "Sparse[int]") and box is pd.Index:
warn = FutureWarning
msg = "passing a SparseArray to pd.Index"
with tm.assert_produces_warning(warn, match=msg):
obj = box(values)
if values.dtype.kind in "miuf":
result = np.add.reduce(obj)
if box is pd.DataFrame:
expected = obj.sum(numeric_only=False)
tm.assert_series_equal(result, expected)
elif box is pd.Index:
# Int64Index, Index has no 'sum'
expected = obj._values.sum()
assert result == expected
else:
expected = obj.sum()
assert result == expected
else:
msg = "|".join(
[
"does not support reduction",
"unsupported operand type",
"ufunc 'add' cannot use operands",
]
)
with pytest.raises(TypeError, match=msg):
np.add.reduce(obj)
def test_max(self, values_for_np_reduce, box_with_array):
box = box_with_array
values = values_for_np_reduce
same_type = True
if box is pd.Index and values.dtype.kind in ["i", "f"]:
# ATM Index casts to object, so we get python ints/floats
same_type = False
warn = None
if is_dtype_equal(values.dtype, "Sparse[int]") and box is pd.Index:
warn = FutureWarning
msg = "passing a SparseArray to pd.Index"
with tm.assert_produces_warning(warn, match=msg):
obj = box(values)
result = np.maximum.reduce(obj)
if box is pd.DataFrame:
# TODO: cases with axis kwarg
expected = obj.max(numeric_only=False)
tm.assert_series_equal(result, expected)
else:
expected = values[1]
assert result == expected
if same_type:
# check we have e.g. Timestamp instead of dt64
assert type(result) == type(expected)
def test_min(self, values_for_np_reduce, box_with_array):
box = box_with_array
values = values_for_np_reduce
same_type = True
if box is pd.Index and values.dtype.kind in ["i", "f"]:
# ATM Index casts to object, so we get python ints/floats
same_type = False
warn = None
if is_dtype_equal(values.dtype, "Sparse[int]") and box is pd.Index:
warn = FutureWarning
msg = "passing a SparseArray to pd.Index"
with tm.assert_produces_warning(warn, match=msg):
obj = box(values)
result = np.minimum.reduce(obj)
if box is pd.DataFrame:
expected = obj.min(numeric_only=False)
tm.assert_series_equal(result, expected)
else:
expected = values[0]
assert result == expected
if same_type:
# check we have e.g. Timestamp instead of dt64
assert type(result) == type(expected)
@pytest.mark.parametrize("type_", [list, deque, tuple])
def test_binary_ufunc_other_types(type_):
a = pd.Series([1, 2, 3], name="name")
b = type_([3, 4, 5])
result = np.add(a, b)
expected = pd.Series(np.add(a.to_numpy(), b), name="name")
tm.assert_series_equal(result, expected)
def test_object_dtype_ok():
class Thing:
def __init__(self, value):
self.value = value
def __add__(self, other):
other = getattr(other, "value", other)
return type(self)(self.value + other)
def __eq__(self, other) -> bool:
return type(other) is Thing and self.value == other.value
def __repr__(self) -> str:
return f"Thing({self.value})"
s = pd.Series([Thing(1), Thing(2)])
result = np.add(s, Thing(1))
expected = pd.Series([Thing(2), Thing(3)])
tm.assert_series_equal(result, expected)
def test_outer():
# https://github.com/pandas-dev/pandas/issues/27186
s = pd.Series([1, 2, 3])
o = np.array([1, 2, 3])
with pytest.raises(NotImplementedError, match=tm.EMPTY_STRING_PATTERN):
np.subtract.outer(s, o)