A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/series/test_subclass.py

61 lines
2.0 KiB

import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
class TestSeriesSubclassing:
@pytest.mark.parametrize(
"idx_method, indexer, exp_data, exp_idx",
[
["loc", ["a", "b"], [1, 2], "ab"],
["iloc", [2, 3], [3, 4], "cd"],
],
)
def test_indexing_sliced(self, idx_method, indexer, exp_data, exp_idx):
s = tm.SubclassedSeries([1, 2, 3, 4], index=list("abcd"))
res = getattr(s, idx_method)[indexer]
exp = tm.SubclassedSeries(exp_data, index=list(exp_idx))
tm.assert_series_equal(res, exp)
def test_to_frame(self):
s = tm.SubclassedSeries([1, 2, 3, 4], index=list("abcd"), name="xxx")
res = s.to_frame()
exp = tm.SubclassedDataFrame({"xxx": [1, 2, 3, 4]}, index=list("abcd"))
tm.assert_frame_equal(res, exp)
def test_subclass_unstack(self):
# GH 15564
s = tm.SubclassedSeries([1, 2, 3, 4], index=[list("aabb"), list("xyxy")])
res = s.unstack()
exp = tm.SubclassedDataFrame({"x": [1, 3], "y": [2, 4]}, index=["a", "b"])
tm.assert_frame_equal(res, exp)
def test_subclass_empty_repr(self):
with tm.assert_produces_warning(FutureWarning):
sub_series = tm.SubclassedSeries()
assert "SubclassedSeries" in repr(sub_series)
def test_asof(self):
N = 3
rng = pd.date_range("1/1/1990", periods=N, freq="53s")
s = tm.SubclassedSeries({"A": [np.nan, np.nan, np.nan]}, index=rng)
result = s.asof(rng[-2:])
assert isinstance(result, tm.SubclassedSeries)
def test_explode(self):
s = tm.SubclassedSeries([[1, 2, 3], "foo", [], [3, 4]])
result = s.explode()
assert isinstance(result, tm.SubclassedSeries)
def test_equals(self):
# https://github.com/pandas-dev/pandas/pull/34402
# allow subclass in both directions
s1 = pd.Series([1, 2, 3])
s2 = tm.SubclassedSeries([1, 2, 3])
assert s1.equals(s2)
assert s2.equals(s1)