A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/series/test_api.py

205 lines
6.8 KiB

import inspect
import pydoc
import numpy as np
import pytest
from pandas.util._test_decorators import skip_if_no
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
date_range,
)
import pandas._testing as tm
class TestSeriesMisc:
def test_tab_completion(self):
# GH 9910
s = Series(list("abcd"))
# Series of str values should have .str but not .dt/.cat in __dir__
assert "str" in dir(s)
assert "dt" not in dir(s)
assert "cat" not in dir(s)
def test_tab_completion_dt(self):
# similarly for .dt
s = Series(date_range("1/1/2015", periods=5))
assert "dt" in dir(s)
assert "str" not in dir(s)
assert "cat" not in dir(s)
def test_tab_completion_cat(self):
# Similarly for .cat, but with the twist that str and dt should be
# there if the categories are of that type first cat and str.
s = Series(list("abbcd"), dtype="category")
assert "cat" in dir(s)
assert "str" in dir(s) # as it is a string categorical
assert "dt" not in dir(s)
def test_tab_completion_cat_str(self):
# similar to cat and str
s = Series(date_range("1/1/2015", periods=5)).astype("category")
assert "cat" in dir(s)
assert "str" not in dir(s)
assert "dt" in dir(s) # as it is a datetime categorical
def test_tab_completion_with_categorical(self):
# test the tab completion display
ok_for_cat = [
"categories",
"codes",
"ordered",
"set_categories",
"add_categories",
"remove_categories",
"rename_categories",
"reorder_categories",
"remove_unused_categories",
"as_ordered",
"as_unordered",
]
s = Series(list("aabbcde")).astype("category")
results = sorted({r for r in s.cat.__dir__() if not r.startswith("_")})
tm.assert_almost_equal(results, sorted(set(ok_for_cat)))
@pytest.mark.parametrize(
"index",
[
tm.makeUnicodeIndex(10),
tm.makeStringIndex(10),
tm.makeCategoricalIndex(10),
Index(["foo", "bar", "baz"] * 2),
tm.makeDateIndex(10),
tm.makePeriodIndex(10),
tm.makeTimedeltaIndex(10),
tm.makeIntIndex(10),
tm.makeUIntIndex(10),
tm.makeIntIndex(10),
tm.makeFloatIndex(10),
Index([True, False]),
Index([f"a{i}" for i in range(101)]),
pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")),
pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")),
],
)
def test_index_tab_completion(self, index):
# dir contains string-like values of the Index.
s = Series(index=index, dtype=object)
dir_s = dir(s)
for i, x in enumerate(s.index.unique(level=0)):
if i < 100:
assert not isinstance(x, str) or not x.isidentifier() or x in dir_s
else:
assert x not in dir_s
@pytest.mark.parametrize("ser", [Series(dtype=object), Series([1])])
def test_not_hashable(self, ser):
msg = "unhashable type: 'Series'"
with pytest.raises(TypeError, match=msg):
hash(ser)
def test_contains(self, datetime_series):
tm.assert_contains_all(datetime_series.index, datetime_series)
def test_axis_alias(self):
s = Series([1, 2, np.nan])
tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
assert s.dropna().sum("rows") == 3
assert s._get_axis_number("rows") == 0
assert s._get_axis_name("rows") == "index"
def test_class_axis(self):
# https://github.com/pandas-dev/pandas/issues/18147
# no exception and no empty docstring
assert pydoc.getdoc(Series.index)
def test_ndarray_compat(self):
# test numpy compat with Series as sub-class of NDFrame
tsdf = DataFrame(
np.random.randn(1000, 3),
columns=["A", "B", "C"],
index=date_range("1/1/2000", periods=1000),
)
def f(x):
return x[x.idxmax()]
result = tsdf.apply(f)
expected = tsdf.max()
tm.assert_series_equal(result, expected)
def test_ndarray_compat_like_func(self):
# using an ndarray like function
s = Series(np.random.randn(10))
result = Series(np.ones_like(s))
expected = Series(1, index=range(10), dtype="float64")
tm.assert_series_equal(result, expected)
def test_ndarray_compat_ravel(self):
# ravel
s = Series(np.random.randn(10))
tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F"))
def test_empty_method(self):
s_empty = Series(dtype=object)
assert s_empty.empty
@pytest.mark.parametrize("dtype", ["int64", object])
def test_empty_method_full_series(self, dtype):
full_series = Series(index=[1], dtype=dtype)
assert not full_series.empty
@pytest.mark.parametrize("dtype", [None, "Int64"])
def test_integer_series_size(self, dtype):
# GH 25580
s = Series(range(9), dtype=dtype)
assert s.size == 9
def test_attrs(self):
s = Series([0, 1], name="abc")
assert s.attrs == {}
s.attrs["version"] = 1
result = s + 1
assert result.attrs == {"version": 1}
@skip_if_no("jinja2")
def test_inspect_getmembers(self):
# GH38782
ser = Series(dtype=object)
with tm.assert_produces_warning(None):
inspect.getmembers(ser)
def test_unknown_attribute(self):
# GH#9680
tdi = pd.timedelta_range(start=0, periods=10, freq="1s")
ser = Series(np.random.normal(size=10), index=tdi)
assert "foo" not in ser.__dict__.keys()
msg = "'Series' object has no attribute 'foo'"
with pytest.raises(AttributeError, match=msg):
ser.foo
@pytest.mark.parametrize("op", ["year", "day", "second", "weekday"])
def test_datetime_series_no_datelike_attrs(self, op, datetime_series):
# GH#7206
msg = f"'Series' object has no attribute '{op}'"
with pytest.raises(AttributeError, match=msg):
getattr(datetime_series, op)
def test_series_datetimelike_attribute_access(self):
# attribute access should still work!
ser = Series({"year": 2000, "month": 1, "day": 10})
assert ser.year == 2000
assert ser.month == 1
assert ser.day == 10
def test_series_datetimelike_attribute_access_invalid(self):
ser = Series({"year": 2000, "month": 1, "day": 10})
msg = "'Series' object has no attribute 'weekday'"
with pytest.raises(AttributeError, match=msg):
ser.weekday