A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/series/methods/test_update.py

129 lines
4.5 KiB

import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
CategoricalDtype,
DataFrame,
NaT,
Series,
Timestamp,
)
import pandas._testing as tm
class TestUpdate:
def test_update(self):
s = Series([1.5, np.nan, 3.0, 4.0, np.nan])
s2 = Series([np.nan, 3.5, np.nan, 5.0])
s.update(s2)
expected = Series([1.5, 3.5, 3.0, 5.0, np.nan])
tm.assert_series_equal(s, expected)
# GH 3217
df = DataFrame([{"a": 1}, {"a": 3, "b": 2}])
df["c"] = np.nan
df["c"].update(Series(["foo"], index=[0]))
expected = DataFrame(
[[1, np.nan, "foo"], [3, 2.0, np.nan]], columns=["a", "b", "c"]
)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize(
"other, dtype, expected",
[
# other is int
([61, 63], "int32", Series([10, 61, 12], dtype="int32")),
([61, 63], "int64", Series([10, 61, 12])),
([61, 63], float, Series([10.0, 61.0, 12.0])),
([61, 63], object, Series([10, 61, 12], dtype=object)),
# other is float, but can be cast to int
([61.0, 63.0], "int32", Series([10, 61, 12], dtype="int32")),
([61.0, 63.0], "int64", Series([10, 61, 12])),
([61.0, 63.0], float, Series([10.0, 61.0, 12.0])),
([61.0, 63.0], object, Series([10, 61.0, 12], dtype=object)),
# others is float, cannot be cast to int
([61.1, 63.1], "int32", Series([10.0, 61.1, 12.0])),
([61.1, 63.1], "int64", Series([10.0, 61.1, 12.0])),
([61.1, 63.1], float, Series([10.0, 61.1, 12.0])),
([61.1, 63.1], object, Series([10, 61.1, 12], dtype=object)),
# other is object, cannot be cast
([(61,), (63,)], "int32", Series([10, (61,), 12])),
([(61,), (63,)], "int64", Series([10, (61,), 12])),
([(61,), (63,)], float, Series([10.0, (61,), 12.0])),
([(61,), (63,)], object, Series([10, (61,), 12])),
],
)
def test_update_dtypes(self, other, dtype, expected):
ser = Series([10, 11, 12], dtype=dtype)
other = Series(other, index=[1, 3])
ser.update(other)
tm.assert_series_equal(ser, expected)
@pytest.mark.parametrize(
"series, other, expected",
[
# update by key
(
Series({"a": 1, "b": 2, "c": 3, "d": 4}),
{"b": 5, "c": np.nan},
Series({"a": 1, "b": 5, "c": 3, "d": 4}),
),
# update by position
(Series([1, 2, 3, 4]), [np.nan, 5, 1], Series([1, 5, 1, 4])),
],
)
def test_update_from_non_series(self, series, other, expected):
# GH 33215
series.update(other)
tm.assert_series_equal(series, expected)
@pytest.mark.parametrize(
"data, other, expected, dtype",
[
(["a", None], [None, "b"], ["a", "b"], "string[python]"),
pytest.param(
["a", None],
[None, "b"],
["a", "b"],
"string[pyarrow]",
marks=td.skip_if_no("pyarrow", min_version="1.0.0"),
),
([1, None], [None, 2], [1, 2], "Int64"),
([True, None], [None, False], [True, False], "boolean"),
(
["a", None],
[None, "b"],
["a", "b"],
CategoricalDtype(categories=["a", "b"]),
),
(
[Timestamp(year=2020, month=1, day=1, tz="Europe/London"), NaT],
[NaT, Timestamp(year=2020, month=1, day=1, tz="Europe/London")],
[Timestamp(year=2020, month=1, day=1, tz="Europe/London")] * 2,
"datetime64[ns, Europe/London]",
),
],
)
def test_update_extension_array_series(self, data, other, expected, dtype):
result = Series(data, dtype=dtype)
other = Series(other, dtype=dtype)
expected = Series(expected, dtype=dtype)
result.update(other)
tm.assert_series_equal(result, expected)
def test_update_with_categorical_type(self):
# GH 25744
dtype = CategoricalDtype(["a", "b", "c", "d"])
s1 = Series(["a", "b", "c"], index=[1, 2, 3], dtype=dtype)
s2 = Series(["b", "a"], index=[1, 2], dtype=dtype)
s1.update(s2)
result = s1
expected = Series(["b", "a", "c"], index=[1, 2, 3], dtype=dtype)
tm.assert_series_equal(result, expected)