A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/series/methods/test_nlargest.py

245 lines
8.0 KiB

"""
Note: for naming purposes, most tests are title with as e.g. "test_nlargest_foo"
but are implicitly also testing nsmallest_foo.
"""
from itertools import product
import numpy as np
import pytest
import pandas as pd
from pandas import Series
import pandas._testing as tm
main_dtypes = [
"datetime",
"datetimetz",
"timedelta",
"int8",
"int16",
"int32",
"int64",
"float32",
"float64",
"uint8",
"uint16",
"uint32",
"uint64",
]
@pytest.fixture
def s_main_dtypes():
"""
A DataFrame with many dtypes
* datetime
* datetimetz
* timedelta
* [u]int{8,16,32,64}
* float{32,64}
The columns are the name of the dtype.
"""
df = pd.DataFrame(
{
"datetime": pd.to_datetime(["2003", "2002", "2001", "2002", "2005"]),
"datetimetz": pd.to_datetime(
["2003", "2002", "2001", "2002", "2005"]
).tz_localize("US/Eastern"),
"timedelta": pd.to_timedelta(["3d", "2d", "1d", "2d", "5d"]),
}
)
for dtype in [
"int8",
"int16",
"int32",
"int64",
"float32",
"float64",
"uint8",
"uint16",
"uint32",
"uint64",
]:
df[dtype] = Series([3, 2, 1, 2, 5], dtype=dtype)
return df
@pytest.fixture(params=main_dtypes)
def s_main_dtypes_split(request, s_main_dtypes):
"""Each series in s_main_dtypes."""
return s_main_dtypes[request.param]
def assert_check_nselect_boundary(vals, dtype, method):
# helper function for 'test_boundary_{dtype}' tests
ser = Series(vals, dtype=dtype)
result = getattr(ser, method)(3)
expected_idxr = [0, 1, 2] if method == "nsmallest" else [3, 2, 1]
expected = ser.loc[expected_idxr]
tm.assert_series_equal(result, expected)
class TestSeriesNLargestNSmallest:
@pytest.mark.parametrize(
"r",
[
Series([3.0, 2, 1, 2, "5"], dtype="object"),
Series([3.0, 2, 1, 2, 5], dtype="object"),
# not supported on some archs
# Series([3., 2, 1, 2, 5], dtype='complex256'),
Series([3.0, 2, 1, 2, 5], dtype="complex128"),
Series(list("abcde")),
Series(list("abcde"), dtype="category"),
],
)
def test_nlargest_error(self, r):
dt = r.dtype
msg = f"Cannot use method 'n(largest|smallest)' with dtype {dt}"
args = 2, len(r), 0, -1
methods = r.nlargest, r.nsmallest
for method, arg in product(methods, args):
with pytest.raises(TypeError, match=msg):
method(arg)
def test_nsmallest_nlargest(self, s_main_dtypes_split):
# float, int, datetime64 (use i8), timedelts64 (same),
# object that are numbers, object that are strings
ser = s_main_dtypes_split
tm.assert_series_equal(ser.nsmallest(2), ser.iloc[[2, 1]])
tm.assert_series_equal(ser.nsmallest(2, keep="last"), ser.iloc[[2, 3]])
empty = ser.iloc[0:0]
tm.assert_series_equal(ser.nsmallest(0), empty)
tm.assert_series_equal(ser.nsmallest(-1), empty)
tm.assert_series_equal(ser.nlargest(0), empty)
tm.assert_series_equal(ser.nlargest(-1), empty)
tm.assert_series_equal(ser.nsmallest(len(ser)), ser.sort_values())
tm.assert_series_equal(ser.nsmallest(len(ser) + 1), ser.sort_values())
tm.assert_series_equal(ser.nlargest(len(ser)), ser.iloc[[4, 0, 1, 3, 2]])
tm.assert_series_equal(ser.nlargest(len(ser) + 1), ser.iloc[[4, 0, 1, 3, 2]])
def test_nlargest_misc(self):
ser = Series([3.0, np.nan, 1, 2, 5])
result = ser.nlargest()
expected = ser.iloc[[4, 0, 3, 2, 1]]
tm.assert_series_equal(result, expected)
result = ser.nsmallest()
expected = ser.iloc[[2, 3, 0, 4, 1]]
tm.assert_series_equal(result, expected)
msg = 'keep must be either "first", "last"'
with pytest.raises(ValueError, match=msg):
ser.nsmallest(keep="invalid")
with pytest.raises(ValueError, match=msg):
ser.nlargest(keep="invalid")
# GH#15297
ser = Series([1] * 5, index=[1, 2, 3, 4, 5])
expected_first = Series([1] * 3, index=[1, 2, 3])
expected_last = Series([1] * 3, index=[5, 4, 3])
result = ser.nsmallest(3)
tm.assert_series_equal(result, expected_first)
result = ser.nsmallest(3, keep="last")
tm.assert_series_equal(result, expected_last)
result = ser.nlargest(3)
tm.assert_series_equal(result, expected_first)
result = ser.nlargest(3, keep="last")
tm.assert_series_equal(result, expected_last)
@pytest.mark.parametrize("n", range(1, 5))
def test_nlargest_n(self, n):
# GH 13412
ser = Series([1, 4, 3, 2], index=[0, 0, 1, 1])
result = ser.nlargest(n)
expected = ser.sort_values(ascending=False).head(n)
tm.assert_series_equal(result, expected)
result = ser.nsmallest(n)
expected = ser.sort_values().head(n)
tm.assert_series_equal(result, expected)
def test_nlargest_boundary_integer(self, nselect_method, any_int_numpy_dtype):
# GH#21426
dtype_info = np.iinfo(any_int_numpy_dtype)
min_val, max_val = dtype_info.min, dtype_info.max
vals = [min_val, min_val + 1, max_val - 1, max_val]
assert_check_nselect_boundary(vals, any_int_numpy_dtype, nselect_method)
def test_nlargest_boundary_float(self, nselect_method, float_numpy_dtype):
# GH#21426
dtype_info = np.finfo(float_numpy_dtype)
min_val, max_val = dtype_info.min, dtype_info.max
min_2nd, max_2nd = np.nextafter([min_val, max_val], 0, dtype=float_numpy_dtype)
vals = [min_val, min_2nd, max_2nd, max_val]
assert_check_nselect_boundary(vals, float_numpy_dtype, nselect_method)
@pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
def test_nlargest_boundary_datetimelike(self, nselect_method, dtype):
# GH#21426
# use int64 bounds and +1 to min_val since true minimum is NaT
# (include min_val/NaT at end to maintain same expected_idxr)
dtype_info = np.iinfo("int64")
min_val, max_val = dtype_info.min, dtype_info.max
vals = [min_val + 1, min_val + 2, max_val - 1, max_val, min_val]
assert_check_nselect_boundary(vals, dtype, nselect_method)
def test_nlargest_duplicate_keep_all_ties(self):
# see GH#16818
ser = Series([10, 9, 8, 7, 7, 7, 7, 6])
result = ser.nlargest(4, keep="all")
expected = Series([10, 9, 8, 7, 7, 7, 7])
tm.assert_series_equal(result, expected)
result = ser.nsmallest(2, keep="all")
expected = Series([6, 7, 7, 7, 7], index=[7, 3, 4, 5, 6])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"data,expected", [([True, False], [True]), ([True, False, True, True], [True])]
)
def test_nlargest_boolean(self, data, expected):
# GH#26154 : ensure True > False
ser = Series(data)
result = ser.nlargest(1)
expected = Series(expected)
tm.assert_series_equal(result, expected)
def test_nlargest_nullable(self, any_numeric_ea_dtype):
# GH#42816
dtype = any_numeric_ea_dtype
arr = np.random.randn(10).astype(dtype.lower(), copy=False)
ser = Series(arr.copy(), dtype=dtype)
ser[1] = pd.NA
result = ser.nlargest(5)
expected = (
Series(np.delete(arr, 1), index=ser.index.delete(1))
.nlargest(5)
.astype(dtype)
)
tm.assert_series_equal(result, expected)
def test_nsmallest_nan_when_keep_is_all(self):
# GH#46589
s = Series([1, 2, 3, 3, 3, None])
result = s.nsmallest(3, keep="all")
expected = Series([1.0, 2.0, 3.0, 3.0, 3.0])
tm.assert_series_equal(result, expected)
s = Series([1, 2, None, None, None])
result = s.nsmallest(3, keep="all")
expected = Series([1, 2, None, None, None])
tm.assert_series_equal(result, expected)