A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/series/methods/test_duplicated.py

52 lines
1.4 KiB

import numpy as np
import pytest
from pandas import (
Categorical,
Series,
)
import pandas._testing as tm
@pytest.mark.parametrize(
"keep, expected",
[
("first", Series([False, False, True, False, True], name="name")),
("last", Series([True, True, False, False, False], name="name")),
(False, Series([True, True, True, False, True], name="name")),
],
)
def test_duplicated_keep(keep, expected):
ser = Series(["a", "b", "b", "c", "a"], name="name")
result = ser.duplicated(keep=keep)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"keep, expected",
[
("first", Series([False, False, True, False, True])),
("last", Series([True, True, False, False, False])),
(False, Series([True, True, True, False, True])),
],
)
def test_duplicated_nan_none(keep, expected):
ser = Series([np.nan, 3, 3, None, np.nan], dtype=object)
result = ser.duplicated(keep=keep)
tm.assert_series_equal(result, expected)
def test_duplicated_categorical_bool_na(nulls_fixture):
# GH#44351
ser = Series(
Categorical(
[True, False, True, False, nulls_fixture],
categories=[True, False],
ordered=True,
)
)
result = ser.duplicated()
expected = Series([False, False, True, True, False])
tm.assert_series_equal(result, expected)