A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/series/methods/test_clip.py

151 lines
5.1 KiB

from datetime import datetime
import numpy as np
import pytest
import pandas as pd
from pandas import (
Series,
Timestamp,
isna,
notna,
)
import pandas._testing as tm
class TestSeriesClip:
def test_clip(self, datetime_series):
val = datetime_series.median()
assert datetime_series.clip(lower=val).min() == val
assert datetime_series.clip(upper=val).max() == val
result = datetime_series.clip(-0.5, 0.5)
expected = np.clip(datetime_series, -0.5, 0.5)
tm.assert_series_equal(result, expected)
assert isinstance(expected, Series)
def test_clip_types_and_nulls(self):
sers = [
Series([np.nan, 1.0, 2.0, 3.0]),
Series([None, "a", "b", "c"]),
Series(pd.to_datetime([np.nan, 1, 2, 3], unit="D")),
]
for s in sers:
thresh = s[2]
lower = s.clip(lower=thresh)
upper = s.clip(upper=thresh)
assert lower[notna(lower)].min() == thresh
assert upper[notna(upper)].max() == thresh
assert list(isna(s)) == list(isna(lower))
assert list(isna(s)) == list(isna(upper))
def test_series_clipping_with_na_values(self, any_numeric_ea_dtype, nulls_fixture):
# Ensure that clipping method can handle NA values with out failing
# GH#40581
if nulls_fixture is pd.NaT:
# constructor will raise, see
# test_constructor_mismatched_null_nullable_dtype
return
ser = Series([nulls_fixture, 1.0, 3.0], dtype=any_numeric_ea_dtype)
s_clipped_upper = ser.clip(upper=2.0)
s_clipped_lower = ser.clip(lower=2.0)
expected_upper = Series([nulls_fixture, 1.0, 2.0], dtype=any_numeric_ea_dtype)
expected_lower = Series([nulls_fixture, 2.0, 3.0], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(s_clipped_upper, expected_upper)
tm.assert_series_equal(s_clipped_lower, expected_lower)
def test_clip_with_na_args(self):
"""Should process np.nan argument as None"""
# GH#17276
s = Series([1, 2, 3])
tm.assert_series_equal(s.clip(np.nan), Series([1, 2, 3]))
tm.assert_series_equal(s.clip(upper=np.nan, lower=np.nan), Series([1, 2, 3]))
# GH#19992
tm.assert_series_equal(s.clip(lower=[0, 4, np.nan]), Series([1, 4, 3]))
tm.assert_series_equal(s.clip(upper=[1, np.nan, 1]), Series([1, 2, 1]))
# GH#40420
s = Series([1, 2, 3])
result = s.clip(0, [np.nan, np.nan, np.nan])
tm.assert_series_equal(s, result)
def test_clip_against_series(self):
# GH#6966
s = Series([1.0, 1.0, 4.0])
lower = Series([1.0, 2.0, 3.0])
upper = Series([1.5, 2.5, 3.5])
tm.assert_series_equal(s.clip(lower, upper), Series([1.0, 2.0, 3.5]))
tm.assert_series_equal(s.clip(1.5, upper), Series([1.5, 1.5, 3.5]))
@pytest.mark.parametrize("inplace", [True, False])
@pytest.mark.parametrize("upper", [[1, 2, 3], np.asarray([1, 2, 3])])
def test_clip_against_list_like(self, inplace, upper):
# GH#15390
original = Series([5, 6, 7])
result = original.clip(upper=upper, inplace=inplace)
expected = Series([1, 2, 3])
if inplace:
result = original
tm.assert_series_equal(result, expected, check_exact=True)
def test_clip_with_datetimes(self):
# GH#11838
# naive and tz-aware datetimes
t = Timestamp("2015-12-01 09:30:30")
s = Series([Timestamp("2015-12-01 09:30:00"), Timestamp("2015-12-01 09:31:00")])
result = s.clip(upper=t)
expected = Series(
[Timestamp("2015-12-01 09:30:00"), Timestamp("2015-12-01 09:30:30")]
)
tm.assert_series_equal(result, expected)
t = Timestamp("2015-12-01 09:30:30", tz="US/Eastern")
s = Series(
[
Timestamp("2015-12-01 09:30:00", tz="US/Eastern"),
Timestamp("2015-12-01 09:31:00", tz="US/Eastern"),
]
)
result = s.clip(upper=t)
expected = Series(
[
Timestamp("2015-12-01 09:30:00", tz="US/Eastern"),
Timestamp("2015-12-01 09:30:30", tz="US/Eastern"),
]
)
tm.assert_series_equal(result, expected)
def test_clip_with_timestamps_and_oob_datetimes(self):
# GH-42794
ser = Series([datetime(1, 1, 1), datetime(9999, 9, 9)])
result = ser.clip(lower=Timestamp.min, upper=Timestamp.max)
expected = Series([Timestamp.min, Timestamp.max], dtype="object")
tm.assert_series_equal(result, expected)
def test_clip_pos_args_deprecation(self):
# https://github.com/pandas-dev/pandas/issues/41485
ser = Series([1, 2, 3])
msg = (
r"In a future version of pandas all arguments of Series.clip except "
r"for the arguments 'lower' and 'upper' will be keyword-only"
)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = ser.clip(0, 1, 0)
expected = Series([1, 1, 1])
tm.assert_series_equal(result, expected)