A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/series/indexing/test_getitem.py

714 lines
22 KiB

"""
Series.__getitem__ test classes are organized by the type of key passed.
"""
from datetime import (
date,
datetime,
time,
)
import numpy as np
import pytest
from pandas._libs.tslibs import (
conversion,
timezones,
)
from pandas.core.dtypes.common import is_scalar
import pandas as pd
from pandas import (
Categorical,
DataFrame,
DatetimeIndex,
Index,
Series,
Timestamp,
date_range,
period_range,
timedelta_range,
)
import pandas._testing as tm
from pandas.core.indexing import IndexingError
from pandas.tseries.offsets import BDay
class TestSeriesGetitemScalars:
def test_getitem_object_index_float_string(self):
# GH#17286
ser = Series([1] * 4, index=Index(["a", "b", "c", 1.0]))
assert ser["a"] == 1
assert ser[1.0] == 1
def test_getitem_float_keys_tuple_values(self):
# see GH#13509
# unique Index
ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.1, 0.2], name="foo")
result = ser[0.0]
assert result == (1, 1)
# non-unique Index
expected = Series([(1, 1), (2, 2)], index=[0.0, 0.0], name="foo")
ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.0, 0.2], name="foo")
result = ser[0.0]
tm.assert_series_equal(result, expected)
def test_getitem_unrecognized_scalar(self):
# GH#32684 a scalar key that is not recognized by lib.is_scalar
# a series that might be produced via `frame.dtypes`
ser = Series([1, 2], index=[np.dtype("O"), np.dtype("i8")])
key = ser.index[1]
result = ser[key]
assert result == 2
def test_getitem_negative_out_of_bounds(self):
ser = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10))
msg = "index -11 is out of bounds for axis 0 with size 10"
with pytest.raises(IndexError, match=msg):
ser[-11]
def test_getitem_out_of_bounds_indexerror(self, datetime_series):
# don't segfault, GH#495
msg = r"index \d+ is out of bounds for axis 0 with size \d+"
with pytest.raises(IndexError, match=msg):
datetime_series[len(datetime_series)]
def test_getitem_out_of_bounds_empty_rangeindex_keyerror(self):
# GH#917
# With a RangeIndex, an int key gives a KeyError
ser = Series([], dtype=object)
with pytest.raises(KeyError, match="-1"):
ser[-1]
def test_getitem_keyerror_with_int64index(self):
ser = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2])
with pytest.raises(KeyError, match=r"^5$"):
ser[5]
with pytest.raises(KeyError, match=r"^'c'$"):
ser["c"]
# not monotonic
ser = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1])
with pytest.raises(KeyError, match=r"^5$"):
ser[5]
with pytest.raises(KeyError, match=r"^'c'$"):
ser["c"]
def test_getitem_int64(self, datetime_series):
idx = np.int64(5)
assert datetime_series[idx] == datetime_series[5]
def test_getitem_full_range(self):
# github.com/pandas-dev/pandas/commit/4f433773141d2eb384325714a2776bcc5b2e20f7
ser = Series(range(5), index=list(range(5)))
result = ser[list(range(5))]
tm.assert_series_equal(result, ser)
# ------------------------------------------------------------------
# Series with DatetimeIndex
@pytest.mark.parametrize("tzstr", ["Europe/Berlin", "dateutil/Europe/Berlin"])
def test_getitem_pydatetime_tz(self, tzstr):
tz = timezones.maybe_get_tz(tzstr)
index = date_range(
start="2012-12-24 16:00", end="2012-12-24 18:00", freq="H", tz=tzstr
)
ts = Series(index=index, data=index.hour)
time_pandas = Timestamp("2012-12-24 17:00", tz=tzstr)
dt = datetime(2012, 12, 24, 17, 0)
time_datetime = conversion.localize_pydatetime(dt, tz)
assert ts[time_pandas] == ts[time_datetime]
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
def test_string_index_alias_tz_aware(self, tz):
rng = date_range("1/1/2000", periods=10, tz=tz)
ser = Series(np.random.randn(len(rng)), index=rng)
result = ser["1/3/2000"]
tm.assert_almost_equal(result, ser[2])
def test_getitem_time_object(self):
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
ts = Series(np.random.randn(len(rng)), index=rng)
mask = (rng.hour == 9) & (rng.minute == 30)
result = ts[time(9, 30)]
expected = ts[mask]
result.index = result.index._with_freq(None)
tm.assert_series_equal(result, expected)
# ------------------------------------------------------------------
# Series with CategoricalIndex
def test_getitem_scalar_categorical_index(self):
cats = Categorical([Timestamp("12-31-1999"), Timestamp("12-31-2000")])
ser = Series([1, 2], index=cats)
expected = ser.iloc[0]
result = ser[cats[0]]
assert result == expected
def test_getitem_numeric_categorical_listlike_matches_scalar(self):
# GH#15470
ser = Series(["a", "b", "c"], index=pd.CategoricalIndex([2, 1, 0]))
# 0 is treated as a label
assert ser[0] == "c"
# the listlike analogue should also be treated as labels
res = ser[[0]]
expected = ser.iloc[-1:]
tm.assert_series_equal(res, expected)
res2 = ser[[0, 1, 2]]
tm.assert_series_equal(res2, ser.iloc[::-1])
def test_getitem_integer_categorical_not_positional(self):
# GH#14865
ser = Series(["a", "b", "c"], index=Index([1, 2, 3], dtype="category"))
assert ser.get(3) == "c"
assert ser[3] == "c"
def test_getitem_str_with_timedeltaindex(self):
rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
ser = Series(np.arange(len(rng)), index=rng)
key = "6 days, 23:11:12"
indexer = rng.get_loc(key)
assert indexer == 133
result = ser[key]
assert result == ser.iloc[133]
msg = r"^Timedelta\('50 days 00:00:00'\)$"
with pytest.raises(KeyError, match=msg):
rng.get_loc("50 days")
with pytest.raises(KeyError, match=msg):
ser["50 days"]
class TestSeriesGetitemSlices:
def test_getitem_partial_str_slice_with_datetimeindex(self):
# GH#34860
arr = date_range("1/1/2008", "1/1/2009")
ser = arr.to_series()
result = ser["2008"]
rng = date_range(start="2008-01-01", end="2008-12-31")
expected = Series(rng, index=rng)
tm.assert_series_equal(result, expected)
def test_getitem_slice_strings_with_datetimeindex(self):
idx = DatetimeIndex(
["1/1/2000", "1/2/2000", "1/2/2000", "1/3/2000", "1/4/2000"]
)
ts = Series(np.random.randn(len(idx)), index=idx)
result = ts["1/2/2000":]
expected = ts[1:]
tm.assert_series_equal(result, expected)
result = ts["1/2/2000":"1/3/2000"]
expected = ts[1:4]
tm.assert_series_equal(result, expected)
def test_getitem_partial_str_slice_with_timedeltaindex(self):
rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
ser = Series(np.arange(len(rng)), index=rng)
result = ser["5 day":"6 day"]
expected = ser.iloc[86:134]
tm.assert_series_equal(result, expected)
result = ser["5 day":]
expected = ser.iloc[86:]
tm.assert_series_equal(result, expected)
result = ser[:"6 day"]
expected = ser.iloc[:134]
tm.assert_series_equal(result, expected)
def test_getitem_partial_str_slice_high_reso_with_timedeltaindex(self):
# higher reso
rng = timedelta_range("1 day 10:11:12", freq="us", periods=2000)
ser = Series(np.arange(len(rng)), index=rng)
result = ser["1 day 10:11:12":]
expected = ser.iloc[0:]
tm.assert_series_equal(result, expected)
result = ser["1 day 10:11:12.001":]
expected = ser.iloc[1000:]
tm.assert_series_equal(result, expected)
result = ser["1 days, 10:11:12.001001"]
assert result == ser.iloc[1001]
def test_getitem_slice_2d(self, datetime_series):
# GH#30588 multi-dimensional indexing deprecated
with tm.assert_produces_warning(
FutureWarning, match="Support for multi-dimensional indexing"
):
# GH#30867 Don't want to support this long-term, but
# for now ensure that the warning from Index
# doesn't comes through via Series.__getitem__.
result = datetime_series[:, np.newaxis]
expected = datetime_series.values[:, np.newaxis]
tm.assert_almost_equal(result, expected)
# FutureWarning from NumPy.
@pytest.mark.filterwarnings("ignore:Using a non-tuple:FutureWarning")
def test_getitem_median_slice_bug(self):
index = date_range("20090415", "20090519", freq="2B")
s = Series(np.random.randn(13), index=index)
indexer = [slice(6, 7, None)]
with tm.assert_produces_warning(FutureWarning):
# GH#31299
result = s[indexer]
expected = s[indexer[0]]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"slc, positions",
[
[slice(date(2018, 1, 1), None), [0, 1, 2]],
[slice(date(2019, 1, 2), None), [2]],
[slice(date(2020, 1, 1), None), []],
[slice(None, date(2020, 1, 1)), [0, 1, 2]],
[slice(None, date(2019, 1, 1)), [0]],
],
)
def test_getitem_slice_date(self, slc, positions):
# https://github.com/pandas-dev/pandas/issues/31501
ser = Series(
[0, 1, 2],
DatetimeIndex(["2019-01-01", "2019-01-01T06:00:00", "2019-01-02"]),
)
result = ser[slc]
expected = ser.take(positions)
tm.assert_series_equal(result, expected)
def test_getitem_slice_float_raises(self, datetime_series):
msg = (
"cannot do slice indexing on DatetimeIndex with these indexers "
r"\[{key}\] of type float"
)
with pytest.raises(TypeError, match=msg.format(key=r"4\.0")):
datetime_series[4.0:10.0]
with pytest.raises(TypeError, match=msg.format(key=r"4\.5")):
datetime_series[4.5:10.0]
def test_getitem_slice_bug(self):
ser = Series(range(10), index=list(range(10)))
result = ser[-12:]
tm.assert_series_equal(result, ser)
result = ser[-7:]
tm.assert_series_equal(result, ser[3:])
result = ser[:-12]
tm.assert_series_equal(result, ser[:0])
def test_getitem_slice_integers(self):
ser = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16])
result = ser[:4]
expected = Series(ser.values[:4], index=[2, 4, 6, 8])
tm.assert_series_equal(result, expected)
class TestSeriesGetitemListLike:
@pytest.mark.parametrize("box", [list, np.array, Index, Series])
def test_getitem_no_matches(self, box):
# GH#33462 we expect the same behavior for list/ndarray/Index/Series
ser = Series(["A", "B"])
key = Series(["C"], dtype=object)
key = box(key)
msg = r"None of \[Index\(\['C'\], dtype='object'\)\] are in the \[index\]"
with pytest.raises(KeyError, match=msg):
ser[key]
def test_getitem_intlist_intindex_periodvalues(self):
ser = Series(period_range("2000-01-01", periods=10, freq="D"))
result = ser[[2, 4]]
exp = Series(
[pd.Period("2000-01-03", freq="D"), pd.Period("2000-01-05", freq="D")],
index=[2, 4],
dtype="Period[D]",
)
tm.assert_series_equal(result, exp)
assert result.dtype == "Period[D]"
@pytest.mark.parametrize("box", [list, np.array, Index])
def test_getitem_intlist_intervalindex_non_int(self, box):
# GH#33404 fall back to positional since ints are unambiguous
dti = date_range("2000-01-03", periods=3)._with_freq(None)
ii = pd.IntervalIndex.from_breaks(dti)
ser = Series(range(len(ii)), index=ii)
expected = ser.iloc[:1]
key = box([0])
result = ser[key]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("box", [list, np.array, Index])
@pytest.mark.parametrize("dtype", [np.int64, np.float64, np.uint64])
def test_getitem_intlist_multiindex_numeric_level(self, dtype, box):
# GH#33404 do _not_ fall back to positional since ints are ambiguous
idx = Index(range(4)).astype(dtype)
dti = date_range("2000-01-03", periods=3)
mi = pd.MultiIndex.from_product([idx, dti])
ser = Series(range(len(mi))[::-1], index=mi)
key = box([5])
with pytest.raises(KeyError, match="5"):
ser[key]
def test_getitem_uint_array_key(self, any_unsigned_int_numpy_dtype):
# GH #37218
ser = Series([1, 2, 3])
key = np.array([4], dtype=any_unsigned_int_numpy_dtype)
with pytest.raises(KeyError, match="4"):
ser[key]
with pytest.raises(KeyError, match="4"):
ser.loc[key]
class TestGetitemBooleanMask:
def test_getitem_boolean(self, string_series):
ser = string_series
mask = ser > ser.median()
# passing list is OK
result = ser[list(mask)]
expected = ser[mask]
tm.assert_series_equal(result, expected)
tm.assert_index_equal(result.index, ser.index[mask])
def test_getitem_boolean_empty(self):
ser = Series([], dtype=np.int64)
ser.index.name = "index_name"
ser = ser[ser.isna()]
assert ser.index.name == "index_name"
assert ser.dtype == np.int64
# GH#5877
# indexing with empty series
ser = Series(["A", "B"])
expected = Series(dtype=object, index=Index([], dtype="int64"))
result = ser[Series([], dtype=object)]
tm.assert_series_equal(result, expected)
# invalid because of the boolean indexer
# that's empty or not-aligned
msg = (
r"Unalignable boolean Series provided as indexer \(index of "
r"the boolean Series and of the indexed object do not match"
)
with pytest.raises(IndexingError, match=msg):
ser[Series([], dtype=bool)]
with pytest.raises(IndexingError, match=msg):
ser[Series([True], dtype=bool)]
def test_getitem_boolean_object(self, string_series):
# using column from DataFrame
ser = string_series
mask = ser > ser.median()
omask = mask.astype(object)
# getitem
result = ser[omask]
expected = ser[mask]
tm.assert_series_equal(result, expected)
# setitem
s2 = ser.copy()
cop = ser.copy()
cop[omask] = 5
s2[mask] = 5
tm.assert_series_equal(cop, s2)
# nans raise exception
omask[5:10] = np.nan
msg = "Cannot mask with non-boolean array containing NA / NaN values"
with pytest.raises(ValueError, match=msg):
ser[omask]
with pytest.raises(ValueError, match=msg):
ser[omask] = 5
def test_getitem_boolean_dt64_copies(self):
# GH#36210
dti = date_range("2016-01-01", periods=4, tz="US/Pacific")
key = np.array([True, True, False, False])
ser = Series(dti._data)
res = ser[key]
assert res._values._data.base is None
# compare with numeric case for reference
ser2 = Series(range(4))
res2 = ser2[key]
assert res2._values.base is None
def test_getitem_boolean_corner(self, datetime_series):
ts = datetime_series
mask_shifted = ts.shift(1, freq=BDay()) > ts.median()
msg = (
r"Unalignable boolean Series provided as indexer \(index of "
r"the boolean Series and of the indexed object do not match"
)
with pytest.raises(IndexingError, match=msg):
ts[mask_shifted]
with pytest.raises(IndexingError, match=msg):
ts.loc[mask_shifted]
def test_getitem_boolean_different_order(self, string_series):
ordered = string_series.sort_values()
sel = string_series[ordered > 0]
exp = string_series[string_series > 0]
tm.assert_series_equal(sel, exp)
def test_getitem_boolean_contiguous_preserve_freq(self):
rng = date_range("1/1/2000", "3/1/2000", freq="B")
mask = np.zeros(len(rng), dtype=bool)
mask[10:20] = True
masked = rng[mask]
expected = rng[10:20]
assert expected.freq == rng.freq
tm.assert_index_equal(masked, expected)
mask[22] = True
masked = rng[mask]
assert masked.freq is None
class TestGetitemCallable:
def test_getitem_callable(self):
# GH#12533
ser = Series(4, index=list("ABCD"))
result = ser[lambda x: "A"]
assert result == ser.loc["A"]
result = ser[lambda x: ["A", "B"]]
expected = ser.loc[["A", "B"]]
tm.assert_series_equal(result, expected)
result = ser[lambda x: [True, False, True, True]]
expected = ser.iloc[[0, 2, 3]]
tm.assert_series_equal(result, expected)
def test_getitem_generator(string_series):
gen = (x > 0 for x in string_series)
result = string_series[gen]
result2 = string_series[iter(string_series > 0)]
expected = string_series[string_series > 0]
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
@pytest.mark.parametrize(
"series",
[
Series([0, 1]),
Series(date_range("2012-01-01", periods=2)),
Series(date_range("2012-01-01", periods=2, tz="CET")),
],
)
def test_getitem_ndim_deprecated(series):
with tm.assert_produces_warning(
FutureWarning,
match="Support for multi-dimensional indexing",
):
result = series[:, None]
expected = np.asarray(series)[:, None]
tm.assert_numpy_array_equal(result, expected)
def test_getitem_multilevel_scalar_slice_not_implemented(
multiindex_year_month_day_dataframe_random_data,
):
# not implementing this for now
df = multiindex_year_month_day_dataframe_random_data
ser = df["A"]
msg = r"\(2000, slice\(3, 4, None\)\)"
with pytest.raises(TypeError, match=msg):
ser[2000, 3:4]
def test_getitem_dataframe_raises():
rng = list(range(10))
ser = Series(10, index=rng)
df = DataFrame(rng, index=rng)
msg = (
"Indexing a Series with DataFrame is not supported, "
"use the appropriate DataFrame column"
)
with pytest.raises(TypeError, match=msg):
ser[df > 5]
def test_getitem_assignment_series_aligment():
# https://github.com/pandas-dev/pandas/issues/37427
# with getitem, when assigning with a Series, it is not first aligned
ser = Series(range(10))
idx = np.array([2, 4, 9])
ser[idx] = Series([10, 11, 12])
expected = Series([0, 1, 10, 3, 11, 5, 6, 7, 8, 12])
tm.assert_series_equal(ser, expected)
def test_getitem_duplicate_index_mistyped_key_raises_keyerror():
# GH#29189 float_index.get_loc(None) should raise KeyError, not TypeError
ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0])
with pytest.raises(KeyError, match="None"):
ser[None]
with pytest.raises(KeyError, match="None"):
ser.index.get_loc(None)
with pytest.raises(KeyError, match="None"):
ser.index._engine.get_loc(None)
def test_getitem_1tuple_slice_without_multiindex():
ser = Series(range(5))
key = (slice(3),)
result = ser[key]
expected = ser[key[0]]
tm.assert_series_equal(result, expected)
def test_getitem_preserve_name(datetime_series):
result = datetime_series[datetime_series > 0]
assert result.name == datetime_series.name
result = datetime_series[[0, 2, 4]]
assert result.name == datetime_series.name
result = datetime_series[5:10]
assert result.name == datetime_series.name
def test_getitem_with_integer_labels():
# integer indexes, be careful
ser = Series(np.random.randn(10), index=list(range(0, 20, 2)))
inds = [0, 2, 5, 7, 8]
arr_inds = np.array([0, 2, 5, 7, 8])
with pytest.raises(KeyError, match="not in index"):
ser[inds]
with pytest.raises(KeyError, match="not in index"):
ser[arr_inds]
def test_getitem_missing(datetime_series):
# missing
d = datetime_series.index[0] - BDay()
msg = r"Timestamp\('1999-12-31 00:00:00', freq='B'\)"
with pytest.raises(KeyError, match=msg):
datetime_series[d]
def test_getitem_fancy(string_series, object_series):
slice1 = string_series[[1, 2, 3]]
slice2 = object_series[[1, 2, 3]]
assert string_series.index[2] == slice1.index[1]
assert object_series.index[2] == slice2.index[1]
assert string_series[2] == slice1[1]
assert object_series[2] == slice2[1]
def test_getitem_box_float64(datetime_series):
value = datetime_series[5]
assert isinstance(value, np.float64)
def test_getitem_unordered_dup():
obj = Series(range(5), index=["c", "a", "a", "b", "b"])
assert is_scalar(obj["c"])
assert obj["c"] == 0
def test_getitem_dups():
ser = Series(range(5), index=["A", "A", "B", "C", "C"], dtype=np.int64)
expected = Series([3, 4], index=["C", "C"], dtype=np.int64)
result = ser["C"]
tm.assert_series_equal(result, expected)
def test_getitem_categorical_str():
# GH#31765
ser = Series(range(5), index=Categorical(["a", "b", "c", "a", "b"]))
result = ser["a"]
expected = ser.iloc[[0, 3]]
tm.assert_series_equal(result, expected)
# Check the intermediate steps work as expected
with tm.assert_produces_warning(FutureWarning):
result = ser.index.get_value(ser, "a")
tm.assert_series_equal(result, expected)
def test_slice_can_reorder_not_uniquely_indexed():
ser = Series(1, index=["a", "a", "b", "b", "c"])
ser[::-1] # it works!
@pytest.mark.parametrize("index_vals", ["aabcd", "aadcb"])
def test_duplicated_index_getitem_positional_indexer(index_vals):
# GH 11747
s = Series(range(5), index=list(index_vals))
result = s[3]
assert result == 3
class TestGetitemDeprecatedIndexers:
@pytest.mark.parametrize("key", [{1}, {1: 1}])
def test_getitem_dict_and_set_deprecated(self, key):
# GH#42825
ser = Series([1, 2, 3])
with tm.assert_produces_warning(FutureWarning):
ser[key]
@pytest.mark.parametrize("key", [{1}, {1: 1}])
def test_setitem_dict_and_set_deprecated(self, key):
# GH#42825
ser = Series([1, 2, 3])
with tm.assert_produces_warning(FutureWarning):
ser[key] = 1