A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/reshape/test_pivot_multilevel.py

252 lines
7.3 KiB

import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
MultiIndex,
)
import pandas._testing as tm
@pytest.mark.parametrize(
"input_index, input_columns, input_values, "
"expected_values, expected_columns, expected_index",
[
(
["lev4"],
"lev3",
"values",
[
[0.0, np.nan],
[np.nan, 1.0],
[2.0, np.nan],
[np.nan, 3.0],
[4.0, np.nan],
[np.nan, 5.0],
[6.0, np.nan],
[np.nan, 7.0],
],
Index([1, 2], name="lev3"),
Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"),
),
(
["lev4"],
"lev3",
None,
[
[1.0, np.nan, 1.0, np.nan, 0.0, np.nan],
[np.nan, 1.0, np.nan, 1.0, np.nan, 1.0],
[1.0, np.nan, 2.0, np.nan, 2.0, np.nan],
[np.nan, 1.0, np.nan, 2.0, np.nan, 3.0],
[2.0, np.nan, 1.0, np.nan, 4.0, np.nan],
[np.nan, 2.0, np.nan, 1.0, np.nan, 5.0],
[2.0, np.nan, 2.0, np.nan, 6.0, np.nan],
[np.nan, 2.0, np.nan, 2.0, np.nan, 7.0],
],
MultiIndex.from_tuples(
[
("lev1", 1),
("lev1", 2),
("lev2", 1),
("lev2", 2),
("values", 1),
("values", 2),
],
names=[None, "lev3"],
),
Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"),
),
(
["lev1", "lev2"],
"lev3",
"values",
[[0, 1], [2, 3], [4, 5], [6, 7]],
Index([1, 2], name="lev3"),
MultiIndex.from_tuples(
[(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
),
),
(
["lev1", "lev2"],
"lev3",
None,
[[1, 2, 0, 1], [3, 4, 2, 3], [5, 6, 4, 5], [7, 8, 6, 7]],
MultiIndex.from_tuples(
[("lev4", 1), ("lev4", 2), ("values", 1), ("values", 2)],
names=[None, "lev3"],
),
MultiIndex.from_tuples(
[(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
),
),
],
)
def test_pivot_list_like_index(
input_index,
input_columns,
input_values,
expected_values,
expected_columns,
expected_index,
):
# GH 21425, test when index is given a list
df = pd.DataFrame(
{
"lev1": [1, 1, 1, 1, 2, 2, 2, 2],
"lev2": [1, 1, 2, 2, 1, 1, 2, 2],
"lev3": [1, 2, 1, 2, 1, 2, 1, 2],
"lev4": [1, 2, 3, 4, 5, 6, 7, 8],
"values": [0, 1, 2, 3, 4, 5, 6, 7],
}
)
result = df.pivot(index=input_index, columns=input_columns, values=input_values)
expected = pd.DataFrame(
expected_values, columns=expected_columns, index=expected_index
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"input_index, input_columns, input_values, "
"expected_values, expected_columns, expected_index",
[
(
"lev4",
["lev3"],
"values",
[
[0.0, np.nan],
[np.nan, 1.0],
[2.0, np.nan],
[np.nan, 3.0],
[4.0, np.nan],
[np.nan, 5.0],
[6.0, np.nan],
[np.nan, 7.0],
],
Index([1, 2], name="lev3"),
Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"),
),
(
["lev1", "lev2"],
["lev3"],
"values",
[[0, 1], [2, 3], [4, 5], [6, 7]],
Index([1, 2], name="lev3"),
MultiIndex.from_tuples(
[(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
),
),
(
["lev1"],
["lev2", "lev3"],
"values",
[[0, 1, 2, 3], [4, 5, 6, 7]],
MultiIndex.from_tuples(
[(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev2", "lev3"]
),
Index([1, 2], name="lev1"),
),
(
["lev1", "lev2"],
["lev3", "lev4"],
"values",
[
[0.0, 1.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
[np.nan, np.nan, 2.0, 3.0, np.nan, np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan, np.nan, 4.0, 5.0, np.nan, np.nan],
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 6.0, 7.0],
],
MultiIndex.from_tuples(
[(1, 1), (2, 2), (1, 3), (2, 4), (1, 5), (2, 6), (1, 7), (2, 8)],
names=["lev3", "lev4"],
),
MultiIndex.from_tuples(
[(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
),
),
],
)
def test_pivot_list_like_columns(
input_index,
input_columns,
input_values,
expected_values,
expected_columns,
expected_index,
):
# GH 21425, test when columns is given a list
df = pd.DataFrame(
{
"lev1": [1, 1, 1, 1, 2, 2, 2, 2],
"lev2": [1, 1, 2, 2, 1, 1, 2, 2],
"lev3": [1, 2, 1, 2, 1, 2, 1, 2],
"lev4": [1, 2, 3, 4, 5, 6, 7, 8],
"values": [0, 1, 2, 3, 4, 5, 6, 7],
}
)
result = df.pivot(index=input_index, columns=input_columns, values=input_values)
expected = pd.DataFrame(
expected_values, columns=expected_columns, index=expected_index
)
tm.assert_frame_equal(result, expected)
def test_pivot_multiindexed_rows_and_cols(using_array_manager):
# GH 36360
df = pd.DataFrame(
data=np.arange(12).reshape(4, 3),
columns=MultiIndex.from_tuples(
[(0, 0), (0, 1), (0, 2)], names=["col_L0", "col_L1"]
),
index=MultiIndex.from_tuples(
[(0, 0, 0), (0, 0, 1), (1, 1, 1), (1, 0, 0)],
names=["idx_L0", "idx_L1", "idx_L2"],
),
)
res = df.pivot_table(
index=["idx_L0"],
columns=["idx_L1"],
values=[(0, 1)],
aggfunc=lambda col: col.values.sum(),
)
expected = pd.DataFrame(
data=[[5, np.nan], [10, 7.0]],
columns=MultiIndex.from_tuples(
[(0, 1, 0), (0, 1, 1)], names=["col_L0", "col_L1", "idx_L1"]
),
index=Index([0, 1], dtype="int64", name="idx_L0"),
)
if not using_array_manager:
# BlockManager does not preserve the dtypes
expected = expected.astype("float64")
tm.assert_frame_equal(res, expected)
def test_pivot_df_multiindex_index_none():
# GH 23955
df = pd.DataFrame(
[
["A", "A1", "label1", 1],
["A", "A2", "label2", 2],
["B", "A1", "label1", 3],
["B", "A2", "label2", 4],
],
columns=["index_1", "index_2", "label", "value"],
)
df = df.set_index(["index_1", "index_2"])
result = df.pivot(index=None, columns="label", values="value")
expected = pd.DataFrame(
[[1.0, np.nan], [np.nan, 2.0], [3.0, np.nan], [np.nan, 4.0]],
index=df.index,
columns=Index(["label1", "label2"], name="label"),
)
tm.assert_frame_equal(result, expected)