A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/plotting/test_hist_method.py

774 lines
27 KiB

""" Test cases for .hist method """
import re
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Index,
Series,
to_datetime,
)
import pandas._testing as tm
from pandas.tests.plotting.common import (
TestPlotBase,
_check_plot_works,
)
pytestmark = pytest.mark.slow
@td.skip_if_no_mpl
class TestSeriesPlots(TestPlotBase):
def setup_method(self, method):
TestPlotBase.setup_method(self, method)
import matplotlib as mpl
mpl.rcdefaults()
self.ts = tm.makeTimeSeries()
self.ts.name = "ts"
def test_hist_legacy(self):
_check_plot_works(self.ts.hist)
_check_plot_works(self.ts.hist, grid=False)
_check_plot_works(self.ts.hist, figsize=(8, 10))
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist, by=self.ts.index.month)
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5)
fig, ax = self.plt.subplots(1, 1)
_check_plot_works(self.ts.hist, ax=ax, default_axes=True)
_check_plot_works(self.ts.hist, ax=ax, figure=fig, default_axes=True)
_check_plot_works(self.ts.hist, figure=fig, default_axes=True)
tm.close()
fig, (ax1, ax2) = self.plt.subplots(1, 2)
_check_plot_works(self.ts.hist, figure=fig, ax=ax1, default_axes=True)
_check_plot_works(self.ts.hist, figure=fig, ax=ax2, default_axes=True)
msg = (
"Cannot pass 'figure' when using the 'by' argument, since a new 'Figure' "
"instance will be created"
)
with pytest.raises(ValueError, match=msg):
self.ts.hist(by=self.ts.index, figure=fig)
def test_hist_bins_legacy(self):
df = DataFrame(np.random.randn(10, 2))
ax = df.hist(bins=2)[0][0]
assert len(ax.patches) == 2
def test_hist_layout(self):
df = self.hist_df
msg = "The 'layout' keyword is not supported when 'by' is None"
with pytest.raises(ValueError, match=msg):
df.height.hist(layout=(1, 1))
with pytest.raises(ValueError, match=msg):
df.height.hist(layout=[1, 1])
def test_hist_layout_with_by(self):
df = self.hist_df
# _check_plot_works adds an `ax` kwarg to the method call
# so we get a warning about an axis being cleared, even
# though we don't explicing pass one, see GH #13188
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1))
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1))
self._check_axes_shape(axes, axes_num=2, layout=(3, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1))
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1))
self._check_axes_shape(axes, axes_num=4, layout=(3, 2))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4))
self._check_axes_shape(axes, axes_num=4, layout=(1, 4))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2))
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7))
def test_hist_no_overlap(self):
from matplotlib.pyplot import (
gcf,
subplot,
)
x = Series(np.random.randn(2))
y = Series(np.random.randn(2))
subplot(121)
x.hist()
subplot(122)
y.hist()
fig = gcf()
axes = fig.axes
assert len(axes) == 2
def test_hist_by_no_extra_plots(self):
df = self.hist_df
axes = df.height.hist(by=df.gender) # noqa
assert len(self.plt.get_fignums()) == 1
def test_plot_fails_when_ax_differs_from_figure(self):
from pylab import figure
fig1 = figure()
fig2 = figure()
ax1 = fig1.add_subplot(111)
msg = "passed axis not bound to passed figure"
with pytest.raises(AssertionError, match=msg):
self.ts.hist(ax=ax1, figure=fig2)
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
ser = Series(np.random.randint(1, 10))
ax = ser.hist(histtype=histtype)
self._check_patches_all_filled(ax, filled=expected)
@pytest.mark.parametrize(
"by, expected_axes_num, expected_layout", [(None, 1, (1, 1)), ("b", 2, (1, 2))]
)
def test_hist_with_legend(self, by, expected_axes_num, expected_layout):
# GH 6279 - Series histogram can have a legend
index = 15 * ["1"] + 15 * ["2"]
s = Series(np.random.randn(30), index=index, name="a")
s.index.name = "b"
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(s.hist, default_axes=True, legend=True, by=by)
self._check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
self._check_legend_labels(axes, "a")
@pytest.mark.parametrize("by", [None, "b"])
def test_hist_with_legend_raises(self, by):
# GH 6279 - Series histogram with legend and label raises
index = 15 * ["1"] + 15 * ["2"]
s = Series(np.random.randn(30), index=index, name="a")
s.index.name = "b"
with pytest.raises(ValueError, match="Cannot use both legend and label"):
s.hist(legend=True, by=by, label="c")
def test_hist_kwargs(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 5
self._check_text_labels(ax.yaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(orientation="horizontal", ax=ax)
self._check_text_labels(ax.xaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(align="left", stacked=True, ax=ax)
tm.close()
@td.skip_if_no_scipy
def test_hist_kde(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
# ticks are values, thus ticklabels are blank
self._check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [""] * len(ylabels))
_check_plot_works(self.ts.plot.kde)
_check_plot_works(self.ts.plot.density)
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [""] * len(ylabels))
@td.skip_if_no_scipy
def test_hist_kde_color(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(logy=True, bins=10, color="b", ax=ax)
self._check_ax_scales(ax, yaxis="log")
assert len(ax.patches) == 10
self._check_colors(ax.patches, facecolors=["b"] * 10)
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, color="r", ax=ax)
self._check_ax_scales(ax, yaxis="log")
lines = ax.get_lines()
assert len(lines) == 1
self._check_colors(lines, ["r"])
@td.skip_if_no_mpl
class TestDataFramePlots(TestPlotBase):
def test_hist_df_legacy(self):
from matplotlib.patches import Rectangle
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.hist_df.hist)
# make sure layout is handled
df = DataFrame(np.random.randn(100, 2))
df[2] = to_datetime(
np.random.randint(
self.start_date_to_int64,
self.end_date_to_int64,
size=100,
dtype=np.int64,
)
)
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.hist, grid=False)
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
assert not axes[1, 1].get_visible()
_check_plot_works(df[[2]].hist)
df = DataFrame(np.random.randn(100, 1))
_check_plot_works(df.hist)
# make sure layout is handled
df = DataFrame(np.random.randn(100, 5))
df[5] = to_datetime(
np.random.randint(
self.start_date_to_int64,
self.end_date_to_int64,
size=100,
dtype=np.int64,
)
)
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.hist, layout=(4, 2))
self._check_axes_shape(axes, axes_num=6, layout=(4, 2))
# make sure sharex, sharey is handled
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.hist, sharex=True, sharey=True)
# handle figsize arg
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.hist, figsize=(8, 10))
# check bins argument
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.hist, bins=5)
# make sure xlabelsize and xrot are handled
ser = df[0]
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = ser.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = df.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
tm.close()
ax = ser.hist(cumulative=True, bins=4, density=True)
# height of last bin (index 5) must be 1.0
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
tm.assert_almost_equal(rects[-1].get_height(), 1.0)
tm.close()
ax = ser.hist(log=True)
# scale of y must be 'log'
self._check_ax_scales(ax, yaxis="log")
tm.close()
# propagate attr exception from matplotlib.Axes.hist
with tm.external_error_raised(AttributeError):
ser.hist(foo="bar")
def test_hist_non_numerical_or_datetime_raises(self):
# gh-10444, GH32590
df = DataFrame(
{
"a": np.random.rand(10),
"b": np.random.randint(0, 10, 10),
"c": to_datetime(
np.random.randint(
1582800000000000000, 1583500000000000000, 10, dtype=np.int64
)
),
"d": to_datetime(
np.random.randint(
1582800000000000000, 1583500000000000000, 10, dtype=np.int64
),
utc=True,
),
}
)
df_o = df.astype(object)
msg = "hist method requires numerical or datetime columns, nothing to plot."
with pytest.raises(ValueError, match=msg):
df_o.hist()
def test_hist_layout(self):
df = DataFrame(np.random.randn(100, 2))
df[2] = to_datetime(
np.random.randint(
self.start_date_to_int64,
self.end_date_to_int64,
size=100,
dtype=np.int64,
)
)
layout_to_expected_size = (
{"layout": None, "expected_size": (2, 2)}, # default is 2x2
{"layout": (2, 2), "expected_size": (2, 2)},
{"layout": (4, 1), "expected_size": (4, 1)},
{"layout": (1, 4), "expected_size": (1, 4)},
{"layout": (3, 3), "expected_size": (3, 3)},
{"layout": (-1, 4), "expected_size": (1, 4)},
{"layout": (4, -1), "expected_size": (4, 1)},
{"layout": (-1, 2), "expected_size": (2, 2)},
{"layout": (2, -1), "expected_size": (2, 2)},
)
for layout_test in layout_to_expected_size:
axes = df.hist(layout=layout_test["layout"])
expected = layout_test["expected_size"]
self._check_axes_shape(axes, axes_num=3, layout=expected)
# layout too small for all 4 plots
msg = "Layout of 1x1 must be larger than required size 3"
with pytest.raises(ValueError, match=msg):
df.hist(layout=(1, 1))
# invalid format for layout
msg = re.escape("Layout must be a tuple of (rows, columns)")
with pytest.raises(ValueError, match=msg):
df.hist(layout=(1,))
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.hist(layout=(-1, -1))
# GH 9351
def test_tight_layout(self):
df = DataFrame(np.random.randn(100, 2))
df[2] = to_datetime(
np.random.randint(
self.start_date_to_int64,
self.end_date_to_int64,
size=100,
dtype=np.int64,
)
)
# Use default_axes=True when plotting method generate subplots itself
_check_plot_works(df.hist, default_axes=True)
self.plt.tight_layout()
tm.close()
def test_hist_subplot_xrot(self):
# GH 30288
df = DataFrame(
{
"length": [1.5, 0.5, 1.2, 0.9, 3],
"animal": ["pig", "rabbit", "pig", "pig", "rabbit"],
}
)
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
filterwarnings="always",
column="length",
by="animal",
bins=5,
xrot=0,
)
self._check_ticks_props(axes, xrot=0)
@pytest.mark.parametrize(
"column, expected",
[
(None, ["width", "length", "height"]),
(["length", "width", "height"], ["length", "width", "height"]),
],
)
def test_hist_column_order_unchanged(self, column, expected):
# GH29235
df = DataFrame(
{
"width": [0.7, 0.2, 0.15, 0.2, 1.1],
"length": [1.5, 0.5, 1.2, 0.9, 3],
"height": [3, 0.5, 3.4, 2, 1],
},
index=["pig", "rabbit", "duck", "chicken", "horse"],
)
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
column=column,
layout=(1, 3),
)
result = [axes[0, i].get_title() for i in range(3)]
assert result == expected
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
df = DataFrame(np.random.randint(1, 10, size=(100, 2)), columns=["a", "b"])
ax = df.hist(histtype=histtype)
self._check_patches_all_filled(ax, filled=expected)
@pytest.mark.parametrize("by", [None, "c"])
@pytest.mark.parametrize("column", [None, "b"])
def test_hist_with_legend(self, by, column):
# GH 6279 - DataFrame histogram can have a legend
expected_axes_num = 1 if by is None and column is not None else 2
expected_layout = (1, expected_axes_num)
expected_labels = column or ["a", "b"]
if by is not None:
expected_labels = [expected_labels] * 2
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
legend=True,
by=by,
column=column,
)
self._check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
if by is None and column is None:
axes = axes[0]
for expected_label, ax in zip(expected_labels, axes):
self._check_legend_labels(ax, expected_label)
@pytest.mark.parametrize("by", [None, "c"])
@pytest.mark.parametrize("column", [None, "b"])
def test_hist_with_legend_raises(self, by, column):
# GH 6279 - DataFrame histogram with legend and label raises
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
with pytest.raises(ValueError, match="Cannot use both legend and label"):
df.hist(legend=True, by=by, column=column, label="d")
def test_hist_df_kwargs(self):
df = DataFrame(np.random.randn(10, 2))
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 10
def test_hist_df_with_nonnumerics(self):
# GH 9853
with tm.RNGContext(1):
df = DataFrame(np.random.randn(10, 4), columns=["A", "B", "C", "D"])
df["E"] = ["x", "y"] * 5
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 20
_, ax = self.plt.subplots()
ax = df.plot.hist(ax=ax) # bins=10
assert len(ax.patches) == 40
def test_hist_secondary_legend(self):
# GH 9610
df = DataFrame(np.random.randn(30, 4), columns=list("abcd"))
# primary -> secondary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, ax=ax)
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are drawn on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=["a", "b (right)"])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are draw on left ax
# left axis must be invisible, right axis must be visible
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b (right)"])
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> primary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
# right axes is returned
df["b"].plot.hist(ax=ax, legend=True)
# both legends are draw on left ax
# left and right axis must be visible
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b"])
assert ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
@td.skip_if_no_mpl
class TestDataFrameGroupByPlots(TestPlotBase):
def test_grouped_hist_legacy(self):
from matplotlib.patches import Rectangle
from pandas.plotting._matplotlib.hist import _grouped_hist
df = DataFrame(np.random.randn(500, 1), columns=["A"])
df["B"] = to_datetime(
np.random.randint(
self.start_date_to_int64,
self.end_date_to_int64,
size=500,
dtype=np.int64,
)
)
df["C"] = np.random.randint(0, 4, 500)
df["D"] = ["X"] * 500
axes = _grouped_hist(df.A, by=df.C)
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
tm.close()
axes = df.hist(by=df.C)
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
tm.close()
# group by a key with single value
axes = df.hist(by="D", rot=30)
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
self._check_ticks_props(axes, xrot=30)
tm.close()
# make sure kwargs to hist are handled
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = _grouped_hist(
df.A,
by=df.C,
cumulative=True,
bins=4,
xlabelsize=xf,
xrot=xrot,
ylabelsize=yf,
yrot=yrot,
density=True,
)
# height of last bin (index 5) must be 1.0
for ax in axes.ravel():
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
height = rects[-1].get_height()
tm.assert_almost_equal(height, 1.0)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
tm.close()
axes = _grouped_hist(df.A, by=df.C, log=True)
# scale of y must be 'log'
self._check_ax_scales(axes, yaxis="log")
tm.close()
# propagate attr exception from matplotlib.Axes.hist
with tm.external_error_raised(AttributeError):
_grouped_hist(df.A, by=df.C, foo="bar")
msg = "Specify figure size by tuple instead"
with pytest.raises(ValueError, match=msg):
df.hist(by="C", figsize="default")
def test_grouped_hist_legacy2(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
gender_int = np.random.choice([0, 1], size=n)
df_int = DataFrame({"height": height, "weight": weight, "gender": gender_int})
gb = df_int.groupby("gender")
axes = gb.hist()
assert len(axes) == 2
assert len(self.plt.get_fignums()) == 2
tm.close()
def test_grouped_hist_layout(self):
df = self.hist_df
msg = "Layout of 1x1 must be larger than required size 2"
with pytest.raises(ValueError, match=msg):
df.hist(column="weight", by=df.gender, layout=(1, 1))
msg = "Layout of 1x3 must be larger than required size 4"
with pytest.raises(ValueError, match=msg):
df.hist(column="height", by=df.category, layout=(1, 3))
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.hist(column="height", by=df.category, layout=(-1, -1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(
df.hist, column="height", by=df.gender, layout=(2, 1)
)
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(
df.hist, column="height", by=df.gender, layout=(2, -1)
)
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
axes = df.hist(column="height", by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
axes = df.hist(column="height", by=df.category, layout=(-1, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
axes = df.hist(column="height", by=df.category, layout=(4, 2), figsize=(12, 8))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 8))
tm.close()
# GH 6769
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(
df.hist, column="height", by="classroom", layout=(2, 2)
)
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
# without column
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.hist, by="classroom")
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.hist(by="gender", layout=(3, 5))
self._check_axes_shape(axes, axes_num=2, layout=(3, 5))
axes = df.hist(column=["height", "weight", "category"])
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
def test_grouped_hist_multiple_axes(self):
# GH 6970, GH 7069
df = self.hist_df
fig, axes = self.plt.subplots(2, 3)
returned = df.hist(column=["height", "weight", "category"], ax=axes[0])
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[0])
assert returned[0].figure is fig
returned = df.hist(by="classroom", ax=axes[1])
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[1])
assert returned[0].figure is fig
fig, axes = self.plt.subplots(2, 3)
# pass different number of axes from required
msg = "The number of passed axes must be 1, the same as the output plot"
with pytest.raises(ValueError, match=msg):
axes = df.hist(column="height", ax=axes)
def test_axis_share_x(self):
df = self.hist_df
# GH4089
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True)
# share x
assert self.get_x_axis(ax1).joined(ax1, ax2)
assert self.get_x_axis(ax2).joined(ax1, ax2)
# don't share y
assert not self.get_y_axis(ax1).joined(ax1, ax2)
assert not self.get_y_axis(ax2).joined(ax1, ax2)
def test_axis_share_y(self):
df = self.hist_df
ax1, ax2 = df.hist(column="height", by=df.gender, sharey=True)
# share y
assert self.get_y_axis(ax1).joined(ax1, ax2)
assert self.get_y_axis(ax2).joined(ax1, ax2)
# don't share x
assert not self.get_x_axis(ax1).joined(ax1, ax2)
assert not self.get_x_axis(ax2).joined(ax1, ax2)
def test_axis_share_xy(self):
df = self.hist_df
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True, sharey=True)
# share both x and y
assert self.get_x_axis(ax1).joined(ax1, ax2)
assert self.get_x_axis(ax2).joined(ax1, ax2)
assert self.get_y_axis(ax1).joined(ax1, ax2)
assert self.get_y_axis(ax2).joined(ax1, ax2)
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
df = DataFrame(np.random.randint(1, 10, size=(100, 2)), columns=["a", "b"])
ax = df.hist(by="a", histtype=histtype)
self._check_patches_all_filled(ax, filled=expected)