A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/io/test_compression.py

257 lines
8.3 KiB

import io
import os
from pathlib import Path
import subprocess
import sys
import textwrap
import time
import pytest
import pandas as pd
import pandas._testing as tm
import pandas.io.common as icom
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
def test_compression_size(obj, method, compression_only):
with tm.ensure_clean() as path:
getattr(obj, method)(path, compression=compression_only)
compressed_size = os.path.getsize(path)
getattr(obj, method)(path, compression=None)
uncompressed_size = os.path.getsize(path)
assert uncompressed_size > compressed_size
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_csv", "to_json"])
def test_compression_size_fh(obj, method, compression_only):
with tm.ensure_clean() as path:
with icom.get_handle(path, "w", compression=compression_only) as handles:
getattr(obj, method)(handles.handle)
assert not handles.handle.closed
compressed_size = os.path.getsize(path)
with tm.ensure_clean() as path:
with icom.get_handle(path, "w", compression=None) as handles:
getattr(obj, method)(handles.handle)
assert not handles.handle.closed
uncompressed_size = os.path.getsize(path)
assert uncompressed_size > compressed_size
@pytest.mark.parametrize(
"write_method, write_kwargs, read_method",
[
("to_csv", {"index": False}, pd.read_csv),
("to_json", {}, pd.read_json),
("to_pickle", {}, pd.read_pickle),
],
)
def test_dataframe_compression_defaults_to_infer(
write_method, write_kwargs, read_method, compression_only
):
# GH22004
input = pd.DataFrame([[1.0, 0, -4], [3.4, 5, 2]], columns=["X", "Y", "Z"])
extension = icom._compression_to_extension[compression_only]
with tm.ensure_clean("compressed" + extension) as path:
getattr(input, write_method)(path, **write_kwargs)
output = read_method(path, compression=compression_only)
tm.assert_frame_equal(output, input)
@pytest.mark.parametrize(
"write_method,write_kwargs,read_method,read_kwargs",
[
("to_csv", {"index": False, "header": True}, pd.read_csv, {"squeeze": True}),
("to_json", {}, pd.read_json, {"typ": "series"}),
("to_pickle", {}, pd.read_pickle, {}),
],
)
def test_series_compression_defaults_to_infer(
write_method, write_kwargs, read_method, read_kwargs, compression_only
):
# GH22004
input = pd.Series([0, 5, -2, 10], name="X")
extension = icom._compression_to_extension[compression_only]
with tm.ensure_clean("compressed" + extension) as path:
getattr(input, write_method)(path, **write_kwargs)
if "squeeze" in read_kwargs:
kwargs = read_kwargs.copy()
del kwargs["squeeze"]
output = read_method(path, compression=compression_only, **kwargs).squeeze(
"columns"
)
else:
output = read_method(path, compression=compression_only, **read_kwargs)
tm.assert_series_equal(output, input, check_names=False)
def test_compression_warning(compression_only):
# Assert that passing a file object to to_csv while explicitly specifying a
# compression protocol triggers a RuntimeWarning, as per GH21227.
df = pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
)
with tm.ensure_clean() as path:
with icom.get_handle(path, "w", compression=compression_only) as handles:
with tm.assert_produces_warning(RuntimeWarning):
df.to_csv(handles.handle, compression=compression_only)
def test_compression_binary(compression_only):
"""
Binary file handles support compression.
GH22555
"""
df = tm.makeDataFrame()
# with a file
with tm.ensure_clean() as path:
with open(path, mode="wb") as file:
df.to_csv(file, mode="wb", compression=compression_only)
file.seek(0) # file shouldn't be closed
tm.assert_frame_equal(
df, pd.read_csv(path, index_col=0, compression=compression_only)
)
# with BytesIO
file = io.BytesIO()
df.to_csv(file, mode="wb", compression=compression_only)
file.seek(0) # file shouldn't be closed
tm.assert_frame_equal(
df, pd.read_csv(file, index_col=0, compression=compression_only)
)
def test_gzip_reproducibility_file_name():
"""
Gzip should create reproducible archives with mtime.
Note: Archives created with different filenames will still be different!
GH 28103
"""
df = tm.makeDataFrame()
compression_options = {"method": "gzip", "mtime": 1}
# test for filename
with tm.ensure_clean() as path:
path = Path(path)
df.to_csv(path, compression=compression_options)
time.sleep(2)
output = path.read_bytes()
df.to_csv(path, compression=compression_options)
assert output == path.read_bytes()
def test_gzip_reproducibility_file_object():
"""
Gzip should create reproducible archives with mtime.
GH 28103
"""
df = tm.makeDataFrame()
compression_options = {"method": "gzip", "mtime": 1}
# test for file object
buffer = io.BytesIO()
df.to_csv(buffer, compression=compression_options, mode="wb")
output = buffer.getvalue()
time.sleep(2)
buffer = io.BytesIO()
df.to_csv(buffer, compression=compression_options, mode="wb")
assert output == buffer.getvalue()
def test_with_missing_lzma():
"""Tests if import pandas works when lzma is not present."""
# https://github.com/pandas-dev/pandas/issues/27575
code = textwrap.dedent(
"""\
import sys
sys.modules['lzma'] = None
import pandas
"""
)
subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE)
def test_with_missing_lzma_runtime():
"""Tests if RuntimeError is hit when calling lzma without
having the module available.
"""
code = textwrap.dedent(
"""
import sys
import pytest
sys.modules['lzma'] = None
import pandas as pd
df = pd.DataFrame()
with pytest.raises(RuntimeError, match='lzma module'):
df.to_csv('foo.csv', compression='xz')
"""
)
subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE)
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
def test_gzip_compression_level(obj, method):
# GH33196
with tm.ensure_clean() as path:
getattr(obj, method)(path, compression="gzip")
compressed_size_default = os.path.getsize(path)
getattr(obj, method)(path, compression={"method": "gzip", "compresslevel": 1})
compressed_size_fast = os.path.getsize(path)
assert compressed_size_default < compressed_size_fast
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
def test_bzip_compression_level(obj, method):
"""GH33196 bzip needs file size > 100k to show a size difference between
compression levels, so here we just check if the call works when
compression is passed as a dict.
"""
with tm.ensure_clean() as path:
getattr(obj, method)(path, compression={"method": "bz2", "compresslevel": 1})