A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/indexing/multiindex/test_setitem.py

509 lines
16 KiB

import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
MultiIndex,
Series,
Timestamp,
date_range,
isna,
notna,
)
import pandas._testing as tm
import pandas.core.common as com
def assert_equal(a, b):
assert a == b
class TestMultiIndexSetItem:
def check(self, target, indexers, value, compare_fn=assert_equal, expected=None):
target.loc[indexers] = value
result = target.loc[indexers]
if expected is None:
expected = value
compare_fn(result, expected)
def test_setitem_multiindex(self):
# GH#7190
cols = ["A", "w", "l", "a", "x", "X", "d", "profit"]
index = MultiIndex.from_product(
[np.arange(0, 100), np.arange(0, 80)], names=["time", "firm"]
)
t, n = 0, 2
df = DataFrame(
np.nan,
columns=cols,
index=index,
)
self.check(target=df, indexers=((t, n), "X"), value=0)
df = DataFrame(-999, columns=cols, index=index)
self.check(target=df, indexers=((t, n), "X"), value=1)
df = DataFrame(columns=cols, index=index)
self.check(target=df, indexers=((t, n), "X"), value=2)
# gh-7218: assigning with 0-dim arrays
df = DataFrame(-999, columns=cols, index=index)
self.check(
target=df,
indexers=((t, n), "X"),
value=np.array(3),
expected=3,
)
def test_setitem_multiindex2(self):
# GH#5206
df = DataFrame(
np.arange(25).reshape(5, 5), columns="A,B,C,D,E".split(","), dtype=float
)
df["F"] = 99
row_selection = df["A"] % 2 == 0
col_selection = ["B", "C"]
df.loc[row_selection, col_selection] = df["F"]
output = DataFrame(99.0, index=[0, 2, 4], columns=["B", "C"])
tm.assert_frame_equal(df.loc[row_selection, col_selection], output)
self.check(
target=df,
indexers=(row_selection, col_selection),
value=df["F"],
compare_fn=tm.assert_frame_equal,
expected=output,
)
def test_setitem_multiindex3(self):
# GH#11372
idx = MultiIndex.from_product(
[["A", "B", "C"], date_range("2015-01-01", "2015-04-01", freq="MS")]
)
cols = MultiIndex.from_product(
[["foo", "bar"], date_range("2016-01-01", "2016-02-01", freq="MS")]
)
df = DataFrame(np.random.random((12, 4)), index=idx, columns=cols)
subidx = MultiIndex.from_tuples(
[("A", Timestamp("2015-01-01")), ("A", Timestamp("2015-02-01"))]
)
subcols = MultiIndex.from_tuples(
[("foo", Timestamp("2016-01-01")), ("foo", Timestamp("2016-02-01"))]
)
vals = DataFrame(np.random.random((2, 2)), index=subidx, columns=subcols)
self.check(
target=df,
indexers=(subidx, subcols),
value=vals,
compare_fn=tm.assert_frame_equal,
)
# set all columns
vals = DataFrame(np.random.random((2, 4)), index=subidx, columns=cols)
self.check(
target=df,
indexers=(subidx, slice(None, None, None)),
value=vals,
compare_fn=tm.assert_frame_equal,
)
# identity
copy = df.copy()
self.check(
target=df,
indexers=(df.index, df.columns),
value=df,
compare_fn=tm.assert_frame_equal,
expected=copy,
)
# TODO(ArrayManager) df.loc["bar"] *= 2 doesn't raise an error but results in
# all NaNs -> doesn't work in the "split" path (also for BlockManager actually)
@td.skip_array_manager_not_yet_implemented
def test_multiindex_setitem(self):
# GH 3738
# setting with a multi-index right hand side
arrays = [
np.array(["bar", "bar", "baz", "qux", "qux", "bar"]),
np.array(["one", "two", "one", "one", "two", "one"]),
np.arange(0, 6, 1),
]
df_orig = DataFrame(
np.random.randn(6, 3), index=arrays, columns=["A", "B", "C"]
).sort_index()
expected = df_orig.loc[["bar"]] * 2
df = df_orig.copy()
df.loc[["bar"]] *= 2
tm.assert_frame_equal(df.loc[["bar"]], expected)
# raise because these have differing levels
msg = "cannot align on a multi-index with out specifying the join levels"
with pytest.raises(TypeError, match=msg):
df.loc["bar"] *= 2
def test_multiindex_setitem2(self):
# from SO
# https://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation
df_orig = DataFrame.from_dict(
{
"price": {
("DE", "Coal", "Stock"): 2,
("DE", "Gas", "Stock"): 4,
("DE", "Elec", "Demand"): 1,
("FR", "Gas", "Stock"): 5,
("FR", "Solar", "SupIm"): 0,
("FR", "Wind", "SupIm"): 0,
}
}
)
df_orig.index = MultiIndex.from_tuples(
df_orig.index, names=["Sit", "Com", "Type"]
)
expected = df_orig.copy()
expected.iloc[[0, 2, 3]] *= 2
idx = pd.IndexSlice
df = df_orig.copy()
df.loc[idx[:, :, "Stock"], :] *= 2
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc[idx[:, :, "Stock"], "price"] *= 2
tm.assert_frame_equal(df, expected)
def test_multiindex_assignment(self):
# GH3777 part 2
# mixed dtype
df = DataFrame(
np.random.randint(5, 10, size=9).reshape(3, 3),
columns=list("abc"),
index=[[4, 4, 8], [8, 10, 12]],
)
df["d"] = np.nan
arr = np.array([0.0, 1.0])
df.loc[4, "d"] = arr
tm.assert_series_equal(df.loc[4, "d"], Series(arr, index=[8, 10], name="d"))
def test_multiindex_assignment_single_dtype(self, using_array_manager):
# GH3777 part 2b
# single dtype
arr = np.array([0.0, 1.0])
df = DataFrame(
np.random.randint(5, 10, size=9).reshape(3, 3),
columns=list("abc"),
index=[[4, 4, 8], [8, 10, 12]],
dtype=np.int64,
)
view = df["c"].iloc[:2].values
# arr can be losslessly cast to int, so this setitem is inplace
df.loc[4, "c"] = arr
exp = Series(arr, index=[8, 10], name="c", dtype="int64")
result = df.loc[4, "c"]
tm.assert_series_equal(result, exp)
if not using_array_manager:
# FIXME(ArrayManager): this correctly preserves dtype,
# but incorrectly is not inplace.
# extra check for inplace-ness
tm.assert_numpy_array_equal(view, exp.values)
# arr + 0.5 cannot be cast losslessly to int, so we upcast
df.loc[4, "c"] = arr + 0.5
result = df.loc[4, "c"]
exp = exp + 0.5
tm.assert_series_equal(result, exp)
# scalar ok
df.loc[4, "c"] = 10
exp = Series(10, index=[8, 10], name="c", dtype="float64")
tm.assert_series_equal(df.loc[4, "c"], exp)
# invalid assignments
msg = "Must have equal len keys and value when setting with an iterable"
with pytest.raises(ValueError, match=msg):
df.loc[4, "c"] = [0, 1, 2, 3]
with pytest.raises(ValueError, match=msg):
df.loc[4, "c"] = [0]
# But with a length-1 listlike column indexer this behaves like
# `df.loc[4, "c"] = 0
df.loc[4, ["c"]] = [0]
assert (df.loc[4, "c"] == 0).all()
def test_groupby_example(self):
# groupby example
NUM_ROWS = 100
NUM_COLS = 10
col_names = ["A" + num for num in map(str, np.arange(NUM_COLS).tolist())]
index_cols = col_names[:5]
df = DataFrame(
np.random.randint(5, size=(NUM_ROWS, NUM_COLS)),
dtype=np.int64,
columns=col_names,
)
df = df.set_index(index_cols).sort_index()
grp = df.groupby(level=index_cols[:4])
df["new_col"] = np.nan
# we are actually operating on a copy here
# but in this case, that's ok
for name, df2 in grp:
new_vals = np.arange(df2.shape[0])
df.loc[name, "new_col"] = new_vals
def test_series_setitem(self, multiindex_year_month_day_dataframe_random_data):
ymd = multiindex_year_month_day_dataframe_random_data
s = ymd["A"]
s[2000, 3] = np.nan
assert isna(s.values[42:65]).all()
assert notna(s.values[:42]).all()
assert notna(s.values[65:]).all()
s[2000, 3, 10] = np.nan
assert isna(s.iloc[49])
with pytest.raises(KeyError, match="49"):
# GH#33355 dont fall-back to positional when leading level is int
s[49]
def test_frame_getitem_setitem_boolean(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
df = frame.T.copy()
values = df.values
result = df[df > 0]
expected = df.where(df > 0)
tm.assert_frame_equal(result, expected)
df[df > 0] = 5
values[values > 0] = 5
tm.assert_almost_equal(df.values, values)
df[df == 5] = 0
values[values == 5] = 0
tm.assert_almost_equal(df.values, values)
# a df that needs alignment first
df[df[:-1] < 0] = 2
np.putmask(values[:-1], values[:-1] < 0, 2)
tm.assert_almost_equal(df.values, values)
with pytest.raises(TypeError, match="boolean values only"):
df[df * 0] = 2
def test_frame_getitem_setitem_multislice(self):
levels = [["t1", "t2"], ["a", "b", "c"]]
codes = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]]
midx = MultiIndex(codes=codes, levels=levels, names=[None, "id"])
df = DataFrame({"value": [1, 2, 3, 7, 8]}, index=midx)
result = df.loc[:, "value"]
tm.assert_series_equal(df["value"], result)
result = df.loc[df.index[1:3], "value"]
tm.assert_series_equal(df["value"][1:3], result)
result = df.loc[:, :]
tm.assert_frame_equal(df, result)
result = df
df.loc[:, "value"] = 10
result["value"] = 10
tm.assert_frame_equal(df, result)
df.loc[:, :] = 10
tm.assert_frame_equal(df, result)
def test_frame_setitem_multi_column(self):
df = DataFrame(
np.random.randn(10, 4), columns=[["a", "a", "b", "b"], [0, 1, 0, 1]]
)
cp = df.copy()
cp["a"] = cp["b"]
tm.assert_frame_equal(cp["a"], cp["b"])
# set with ndarray
cp = df.copy()
cp["a"] = cp["b"].values
tm.assert_frame_equal(cp["a"], cp["b"])
def test_frame_setitem_multi_column2(self):
# ---------------------------------------
# GH#1803
columns = MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")])
df = DataFrame(index=[1, 3, 5], columns=columns)
# Works, but adds a column instead of updating the two existing ones
df["A"] = 0.0 # Doesn't work
assert (df["A"].values == 0).all()
# it broadcasts
df["B", "1"] = [1, 2, 3]
df["A"] = df["B", "1"]
sliced_a1 = df["A", "1"]
sliced_a2 = df["A", "2"]
sliced_b1 = df["B", "1"]
tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False)
tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False)
assert sliced_a1.name == ("A", "1")
assert sliced_a2.name == ("A", "2")
assert sliced_b1.name == ("B", "1")
def test_loc_getitem_tuple_plus_columns(
self, multiindex_year_month_day_dataframe_random_data
):
# GH #1013
ymd = multiindex_year_month_day_dataframe_random_data
df = ymd[:5]
result = df.loc[(2000, 1, 6), ["A", "B", "C"]]
expected = df.loc[2000, 1, 6][["A", "B", "C"]]
tm.assert_series_equal(result, expected)
def test_loc_getitem_setitem_slice_integers(self, frame_or_series):
index = MultiIndex(
levels=[[0, 1, 2], [0, 2]], codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]
)
obj = DataFrame(
np.random.randn(len(index), 4), index=index, columns=["a", "b", "c", "d"]
)
obj = tm.get_obj(obj, frame_or_series)
res = obj.loc[1:2]
exp = obj.reindex(obj.index[2:])
tm.assert_equal(res, exp)
obj.loc[1:2] = 7
assert (obj.loc[1:2] == 7).values.all()
def test_setitem_change_dtype(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
dft = frame.T
s = dft["foo", "two"]
dft["foo", "two"] = s > s.median()
tm.assert_series_equal(dft["foo", "two"], s > s.median())
# assert isinstance(dft._data.blocks[1].items, MultiIndex)
reindexed = dft.reindex(columns=[("foo", "two")])
tm.assert_series_equal(reindexed["foo", "two"], s > s.median())
def test_set_column_scalar_with_loc(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
subset = frame.index[[1, 4, 5]]
frame.loc[subset] = 99
assert (frame.loc[subset].values == 99).all()
col = frame["B"]
col[subset] = 97
assert (frame.loc[subset, "B"] == 97).all()
def test_nonunique_assignment_1750(self):
df = DataFrame(
[[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], columns=list("ABCD")
)
df = df.set_index(["A", "B"])
mi = MultiIndex.from_tuples([(1, 1)])
df.loc[mi, "C"] = "_"
assert (df.xs((1, 1))["C"] == "_").all()
def test_astype_assignment_with_dups(self):
# GH 4686
# assignment with dups that has a dtype change
cols = MultiIndex.from_tuples([("A", "1"), ("B", "1"), ("A", "2")])
df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object)
index = df.index.copy()
df["A"] = df["A"].astype(np.float64)
tm.assert_index_equal(df.index, index)
def test_setitem_nonmonotonic(self):
# https://github.com/pandas-dev/pandas/issues/31449
index = MultiIndex.from_tuples(
[("a", "c"), ("b", "x"), ("a", "d")], names=["l1", "l2"]
)
df = DataFrame(data=[0, 1, 2], index=index, columns=["e"])
df.loc["a", "e"] = np.arange(99, 101, dtype="int64")
expected = DataFrame({"e": [99, 1, 100]}, index=index)
tm.assert_frame_equal(df, expected)
class TestSetitemWithExpansionMultiIndex:
def test_setitem_new_column_mixed_depth(self):
arrays = [
["a", "top", "top", "routine1", "routine1", "routine2"],
["", "OD", "OD", "result1", "result2", "result1"],
["", "wx", "wy", "", "", ""],
]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(np.random.randn(4, 6), columns=index)
result = df.copy()
expected = df.copy()
result["b"] = [1, 2, 3, 4]
expected["b", "", ""] = [1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
def test_setitem_new_column_all_na(self):
# GH#1534
mix = MultiIndex.from_tuples([("1a", "2a"), ("1a", "2b"), ("1a", "2c")])
df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix)
s = Series({(1, 1): 1, (1, 2): 2})
df["new"] = s
assert df["new"].isna().all()
@td.skip_array_manager_invalid_test # df["foo"] select multiple columns -> .values
# is not a view
def test_frame_setitem_view_direct(multiindex_dataframe_random_data):
# this works because we are modifying the underlying array
# really a no-no
df = multiindex_dataframe_random_data.T
df["foo"].values[:] = 0
assert (df["foo"].values == 0).all()
def test_frame_setitem_copy_raises(multiindex_dataframe_random_data):
# will raise/warn as its chained assignment
df = multiindex_dataframe_random_data.T
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
with pytest.raises(com.SettingWithCopyError, match=msg):
df["foo"]["one"] = 2
def test_frame_setitem_copy_no_write(multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data.T
expected = frame
df = frame.copy()
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
with pytest.raises(com.SettingWithCopyError, match=msg):
df["foo"]["one"] = 2
result = df
tm.assert_frame_equal(result, expected)