A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/indexing/multiindex/test_getitem.py

394 lines
12 KiB

import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
)
import pandas._testing as tm
from pandas.core.indexing import IndexingError
# ----------------------------------------------------------------------------
# test indexing of Series with multi-level Index
# ----------------------------------------------------------------------------
@pytest.mark.parametrize(
"access_method",
[lambda s, x: s[:, x], lambda s, x: s.loc[:, x], lambda s, x: s.xs(x, level=1)],
)
@pytest.mark.parametrize(
"level1_value, expected",
[(0, Series([1], index=[0])), (1, Series([2, 3], index=[1, 2]))],
)
def test_series_getitem_multiindex(access_method, level1_value, expected):
# GH 6018
# series regression getitem with a multi-index
mi = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)], names=["A", "B"])
ser = Series([1, 2, 3], index=mi)
expected.index.name = "A"
result = access_method(ser, level1_value)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("level0_value", ["D", "A"])
def test_series_getitem_duplicates_multiindex(level0_value):
# GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise
# the appropriate error, only in PY3 of course!
index = MultiIndex(
levels=[[level0_value, "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]],
codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]],
names=["tag", "day"],
)
arr = np.random.randn(len(index), 1)
df = DataFrame(arr, index=index, columns=["val"])
# confirm indexing on missing value raises KeyError
if level0_value != "A":
with pytest.raises(KeyError, match=r"^'A'$"):
df.val["A"]
with pytest.raises(KeyError, match=r"^'X'$"):
df.val["X"]
result = df.val[level0_value]
expected = Series(
arr.ravel()[0:3], name="val", index=Index([26, 37, 57], name="day")
)
tm.assert_series_equal(result, expected)
def test_series_getitem(multiindex_year_month_day_dataframe_random_data, indexer_sl):
s = multiindex_year_month_day_dataframe_random_data["A"]
expected = s.reindex(s.index[42:65])
expected.index = expected.index.droplevel(0).droplevel(0)
result = indexer_sl(s)[2000, 3]
tm.assert_series_equal(result, expected)
def test_series_getitem_returns_scalar(
multiindex_year_month_day_dataframe_random_data, indexer_sl
):
s = multiindex_year_month_day_dataframe_random_data["A"]
expected = s.iloc[49]
result = indexer_sl(s)[2000, 3, 10]
assert result == expected
@pytest.mark.parametrize(
"indexer,expected_error,expected_error_msg",
[
(lambda s: s.__getitem__((2000, 3, 4)), KeyError, r"^\(2000, 3, 4\)$"),
(lambda s: s[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
(lambda s: s.loc[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
(lambda s: s.loc[(2000, 3, 4, 5)], IndexingError, "Too many indexers"),
(lambda s: s.__getitem__(len(s)), KeyError, ""), # match should include len(s)
(lambda s: s[len(s)], KeyError, ""), # match should include len(s)
(
lambda s: s.iloc[len(s)],
IndexError,
"single positional indexer is out-of-bounds",
),
],
)
def test_series_getitem_indexing_errors(
multiindex_year_month_day_dataframe_random_data,
indexer,
expected_error,
expected_error_msg,
):
s = multiindex_year_month_day_dataframe_random_data["A"]
with pytest.raises(expected_error, match=expected_error_msg):
indexer(s)
def test_series_getitem_corner_generator(
multiindex_year_month_day_dataframe_random_data,
):
s = multiindex_year_month_day_dataframe_random_data["A"]
result = s[(x > 0 for x in s)]
expected = s[s > 0]
tm.assert_series_equal(result, expected)
# ----------------------------------------------------------------------------
# test indexing of DataFrame with multi-level Index
# ----------------------------------------------------------------------------
def test_getitem_simple(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data.T
expected = df.values[:, 0]
result = df["foo", "one"].values
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize(
"indexer,expected_error_msg",
[
(lambda df: df[("foo", "four")], r"^\('foo', 'four'\)$"),
(lambda df: df["foobar"], r"^'foobar'$"),
],
)
def test_frame_getitem_simple_key_error(
multiindex_dataframe_random_data, indexer, expected_error_msg
):
df = multiindex_dataframe_random_data.T
with pytest.raises(KeyError, match=expected_error_msg):
indexer(df)
def test_frame_getitem_multicolumn_empty_level():
df = DataFrame({"a": ["1", "2", "3"], "b": ["2", "3", "4"]})
df.columns = [
["level1 item1", "level1 item2"],
["", "level2 item2"],
["level3 item1", "level3 item2"],
]
result = df["level1 item1"]
expected = DataFrame(
[["1"], ["2"], ["3"]], index=df.index, columns=["level3 item1"]
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer,expected_slice",
[
(lambda df: df["foo"], slice(3)),
(lambda df: df["bar"], slice(3, 5)),
(lambda df: df.loc[:, "bar"], slice(3, 5)),
],
)
def test_frame_getitem_toplevel(
multiindex_dataframe_random_data, indexer, expected_slice
):
df = multiindex_dataframe_random_data.T
expected = df.reindex(columns=df.columns[expected_slice])
expected.columns = expected.columns.droplevel(0)
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_frame_mixed_depth_get():
arrays = [
["a", "top", "top", "routine1", "routine1", "routine2"],
["", "OD", "OD", "result1", "result2", "result1"],
["", "wx", "wy", "", "", ""],
]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(np.random.randn(4, 6), columns=index)
result = df["a"]
expected = df["a", "", ""].rename("a")
tm.assert_series_equal(result, expected)
result = df["routine1", "result1"]
expected = df["routine1", "result1", ""]
expected = expected.rename(("routine1", "result1"))
tm.assert_series_equal(result, expected)
def test_frame_getitem_nan_multiindex(nulls_fixture):
# GH#29751
# loc on a multiindex containing nan values
n = nulls_fixture # for code readability
cols = ["a", "b", "c"]
df = DataFrame(
[[11, n, 13], [21, n, 23], [31, n, 33], [41, n, 43]],
columns=cols,
).set_index(["a", "b"])
df["c"] = df["c"].astype("int64")
idx = (21, n)
result = df.loc[:idx]
expected = DataFrame([[11, n, 13], [21, n, 23]], columns=cols).set_index(["a", "b"])
expected["c"] = expected["c"].astype("int64")
tm.assert_frame_equal(result, expected)
result = df.loc[idx:]
expected = DataFrame(
[[21, n, 23], [31, n, 33], [41, n, 43]], columns=cols
).set_index(["a", "b"])
expected["c"] = expected["c"].astype("int64")
tm.assert_frame_equal(result, expected)
idx1, idx2 = (21, n), (31, n)
result = df.loc[idx1:idx2]
expected = DataFrame([[21, n, 23], [31, n, 33]], columns=cols).set_index(["a", "b"])
expected["c"] = expected["c"].astype("int64")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer,expected",
[
(
(["b"], ["bar", np.nan]),
(
DataFrame(
[[2, 3], [5, 6]],
columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
dtype="int64",
)
),
),
(
(["a", "b"]),
(
DataFrame(
[[1, 2, 3], [4, 5, 6]],
columns=MultiIndex.from_tuples(
[("a", "foo"), ("b", "bar"), ("b", np.nan)]
),
dtype="int64",
)
),
),
(
(["b"]),
(
DataFrame(
[[2, 3], [5, 6]],
columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
dtype="int64",
)
),
),
(
(["b"], ["bar"]),
(
DataFrame(
[[2], [5]],
columns=MultiIndex.from_tuples([("b", "bar")]),
dtype="int64",
)
),
),
(
(["b"], [np.nan]),
(
DataFrame(
[[3], [6]],
columns=MultiIndex(
codes=[[1], [-1]], levels=[["a", "b"], ["bar", "foo"]]
),
dtype="int64",
)
),
),
(("b", np.nan), Series([3, 6], dtype="int64", name=("b", np.nan))),
],
)
def test_frame_getitem_nan_cols_multiindex(
indexer,
expected,
nulls_fixture,
):
# Slicing MultiIndex including levels with nan values, for more information
# see GH#25154
df = DataFrame(
[[1, 2, 3], [4, 5, 6]],
columns=MultiIndex.from_tuples(
[("a", "foo"), ("b", "bar"), ("b", nulls_fixture)]
),
dtype="int64",
)
result = df.loc[:, indexer]
tm.assert_equal(result, expected)
# ----------------------------------------------------------------------------
# test indexing of DataFrame with multi-level Index with duplicates
# ----------------------------------------------------------------------------
@pytest.fixture
def dataframe_with_duplicate_index():
"""Fixture for DataFrame used in tests for gh-4145 and gh-4146"""
data = [["a", "d", "e", "c", "f", "b"], [1, 4, 5, 3, 6, 2], [1, 4, 5, 3, 6, 2]]
index = ["h1", "h3", "h5"]
columns = MultiIndex(
levels=[["A", "B"], ["A1", "A2", "B1", "B2"]],
codes=[[0, 0, 0, 1, 1, 1], [0, 3, 3, 0, 1, 2]],
names=["main", "sub"],
)
return DataFrame(data, index=index, columns=columns)
@pytest.mark.parametrize(
"indexer", [lambda df: df[("A", "A1")], lambda df: df.loc[:, ("A", "A1")]]
)
def test_frame_mi_access(dataframe_with_duplicate_index, indexer):
# GH 4145
df = dataframe_with_duplicate_index
index = Index(["h1", "h3", "h5"])
columns = MultiIndex.from_tuples([("A", "A1")], names=["main", "sub"])
expected = DataFrame([["a", 1, 1]], index=columns, columns=index).T
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_frame_mi_access_returns_series(dataframe_with_duplicate_index):
# GH 4146, not returning a block manager when selecting a unique index
# from a duplicate index
# as of 4879, this returns a Series (which is similar to what happens
# with a non-unique)
df = dataframe_with_duplicate_index
expected = Series(["a", 1, 1], index=["h1", "h3", "h5"], name="A1")
result = df["A"]["A1"]
tm.assert_series_equal(result, expected)
def test_frame_mi_access_returns_frame(dataframe_with_duplicate_index):
# selecting a non_unique from the 2nd level
df = dataframe_with_duplicate_index
expected = DataFrame(
[["d", 4, 4], ["e", 5, 5]],
index=Index(["B2", "B2"], name="sub"),
columns=["h1", "h3", "h5"],
).T
result = df["A"]["B2"]
tm.assert_frame_equal(result, expected)
def test_frame_mi_empty_slice():
# GH 15454
df = DataFrame(0, index=range(2), columns=MultiIndex.from_product([[1], [2]]))
result = df[[]]
expected = DataFrame(
index=[0, 1], columns=MultiIndex(levels=[[1], [2]], codes=[[], []])
)
tm.assert_frame_equal(result, expected)
def test_loc_empty_multiindex():
# GH#36936
arrays = [["a", "a", "b", "a"], ["a", "a", "b", "b"]]
index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2"))
df = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
# loc on empty multiindex == loc with False mask
empty_multiindex = df.loc[df.loc[:, "value"] == 0, :].index
result = df.loc[empty_multiindex, :]
expected = df.loc[[False] * len(df.index), :]
tm.assert_frame_equal(result, expected)
# replacing value with loc on empty multiindex
df.loc[df.loc[df.loc[:, "value"] == 0].index, "value"] = 5
result = df
expected = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
tm.assert_frame_equal(result, expected)