A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/indexes/test_engines.py

193 lines
6.5 KiB

import re
import numpy as np
import pytest
from pandas._libs import index as libindex
import pandas as pd
@pytest.fixture(
params=[
(libindex.Int64Engine, np.int64),
(libindex.Int32Engine, np.int32),
(libindex.Int16Engine, np.int16),
(libindex.Int8Engine, np.int8),
(libindex.UInt64Engine, np.uint64),
(libindex.UInt32Engine, np.uint32),
(libindex.UInt16Engine, np.uint16),
(libindex.UInt8Engine, np.uint8),
(libindex.Float64Engine, np.float64),
(libindex.Float32Engine, np.float32),
],
ids=lambda x: x[0].__name__,
)
def numeric_indexing_engine_type_and_dtype(request):
return request.param
class TestDatetimeEngine:
@pytest.mark.parametrize(
"scalar",
[
pd.Timedelta(pd.Timestamp("2016-01-01").asm8.view("m8[ns]")),
pd.Timestamp("2016-01-01").value,
pd.Timestamp("2016-01-01").to_pydatetime(),
pd.Timestamp("2016-01-01").to_datetime64(),
],
)
def test_not_contains_requires_timestamp(self, scalar):
dti1 = pd.date_range("2016-01-01", periods=3)
dti2 = dti1.insert(1, pd.NaT) # non-monotonic
dti3 = dti1.insert(3, dti1[0]) # non-unique
dti4 = pd.date_range("2016-01-01", freq="ns", periods=2_000_000)
dti5 = dti4.insert(0, dti4[0]) # over size threshold, not unique
msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))])
for dti in [dti1, dti2, dti3, dti4, dti5]:
with pytest.raises(TypeError, match=msg):
scalar in dti._engine
with pytest.raises(KeyError, match=msg):
dti._engine.get_loc(scalar)
class TestTimedeltaEngine:
@pytest.mark.parametrize(
"scalar",
[
pd.Timestamp(pd.Timedelta(days=42).asm8.view("datetime64[ns]")),
pd.Timedelta(days=42).value,
pd.Timedelta(days=42).to_pytimedelta(),
pd.Timedelta(days=42).to_timedelta64(),
],
)
def test_not_contains_requires_timedelta(self, scalar):
tdi1 = pd.timedelta_range("42 days", freq="9h", periods=1234)
tdi2 = tdi1.insert(1, pd.NaT) # non-monotonic
tdi3 = tdi1.insert(3, tdi1[0]) # non-unique
tdi4 = pd.timedelta_range("42 days", freq="ns", periods=2_000_000)
tdi5 = tdi4.insert(0, tdi4[0]) # over size threshold, not unique
msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))])
for tdi in [tdi1, tdi2, tdi3, tdi4, tdi5]:
with pytest.raises(TypeError, match=msg):
scalar in tdi._engine
with pytest.raises(KeyError, match=msg):
tdi._engine.get_loc(scalar)
class TestNumericEngine:
def test_is_monotonic(self, numeric_indexing_engine_type_and_dtype):
engine_type, dtype = numeric_indexing_engine_type_and_dtype
num = 1000
arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype)
# monotonic increasing
engine = engine_type(arr)
assert engine.is_monotonic_increasing is True
assert engine.is_monotonic_decreasing is False
# monotonic decreasing
engine = engine_type(arr[::-1])
assert engine.is_monotonic_increasing is False
assert engine.is_monotonic_decreasing is True
# neither monotonic increasing or decreasing
arr = np.array([1] * num + [2] * num + [1] * num, dtype=dtype)
engine = engine_type(arr[::-1])
assert engine.is_monotonic_increasing is False
assert engine.is_monotonic_decreasing is False
def test_is_unique(self, numeric_indexing_engine_type_and_dtype):
engine_type, dtype = numeric_indexing_engine_type_and_dtype
# unique
arr = np.array([1, 3, 2], dtype=dtype)
engine = engine_type(arr)
assert engine.is_unique is True
# not unique
arr = np.array([1, 2, 1], dtype=dtype)
engine = engine_type(arr)
assert engine.is_unique is False
def test_get_loc(self, numeric_indexing_engine_type_and_dtype):
engine_type, dtype = numeric_indexing_engine_type_and_dtype
# unique
arr = np.array([1, 2, 3], dtype=dtype)
engine = engine_type(arr)
assert engine.get_loc(2) == 1
# monotonic
num = 1000
arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype)
engine = engine_type(arr)
assert engine.get_loc(2) == slice(1000, 2000)
# not monotonic
arr = np.array([1, 2, 3] * num, dtype=dtype)
engine = engine_type(arr)
expected = np.array([False, True, False] * num, dtype=bool)
result = engine.get_loc(2)
assert (result == expected).all()
class TestObjectEngine:
engine_type = libindex.ObjectEngine
dtype = np.object_
values = list("abc")
def test_is_monotonic(self):
num = 1000
arr = np.array(["a"] * num + ["a"] * num + ["c"] * num, dtype=self.dtype)
# monotonic increasing
engine = self.engine_type(arr)
assert engine.is_monotonic_increasing is True
assert engine.is_monotonic_decreasing is False
# monotonic decreasing
engine = self.engine_type(arr[::-1])
assert engine.is_monotonic_increasing is False
assert engine.is_monotonic_decreasing is True
# neither monotonic increasing or decreasing
arr = np.array(["a"] * num + ["b"] * num + ["a"] * num, dtype=self.dtype)
engine = self.engine_type(arr[::-1])
assert engine.is_monotonic_increasing is False
assert engine.is_monotonic_decreasing is False
def test_is_unique(self):
# unique
arr = np.array(self.values, dtype=self.dtype)
engine = self.engine_type(arr)
assert engine.is_unique is True
# not unique
arr = np.array(["a", "b", "a"], dtype=self.dtype)
engine = self.engine_type(arr)
assert engine.is_unique is False
def test_get_loc(self):
# unique
arr = np.array(self.values, dtype=self.dtype)
engine = self.engine_type(arr)
assert engine.get_loc("b") == 1
# monotonic
num = 1000
arr = np.array(["a"] * num + ["b"] * num + ["c"] * num, dtype=self.dtype)
engine = self.engine_type(arr)
assert engine.get_loc("b") == slice(1000, 2000)
# not monotonic
arr = np.array(self.values * num, dtype=self.dtype)
engine = self.engine_type(arr)
expected = np.array([False, True, False] * num, dtype=bool)
result = engine.get_loc("b")
assert (result == expected).all()