A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/indexes/multi/test_isin.py

78 lines
2.7 KiB

import numpy as np
import pytest
from pandas import MultiIndex
import pandas._testing as tm
def test_isin_nan():
idx = MultiIndex.from_arrays([["foo", "bar"], [1.0, np.nan]])
tm.assert_numpy_array_equal(idx.isin([("bar", np.nan)]), np.array([False, True]))
tm.assert_numpy_array_equal(
idx.isin([("bar", float("nan"))]), np.array([False, True])
)
def test_isin():
values = [("foo", 2), ("bar", 3), ("quux", 4)]
idx = MultiIndex.from_arrays([["qux", "baz", "foo", "bar"], np.arange(4)])
result = idx.isin(values)
expected = np.array([False, False, True, True])
tm.assert_numpy_array_equal(result, expected)
# empty, return dtype bool
idx = MultiIndex.from_arrays([[], []])
result = idx.isin(values)
assert len(result) == 0
assert result.dtype == np.bool_
def test_isin_level_kwarg():
idx = MultiIndex.from_arrays([["qux", "baz", "foo", "bar"], np.arange(4)])
vals_0 = ["foo", "bar", "quux"]
vals_1 = [2, 3, 10]
expected = np.array([False, False, True, True])
tm.assert_numpy_array_equal(expected, idx.isin(vals_0, level=0))
tm.assert_numpy_array_equal(expected, idx.isin(vals_0, level=-2))
tm.assert_numpy_array_equal(expected, idx.isin(vals_1, level=1))
tm.assert_numpy_array_equal(expected, idx.isin(vals_1, level=-1))
msg = "Too many levels: Index has only 2 levels, not 6"
with pytest.raises(IndexError, match=msg):
idx.isin(vals_0, level=5)
msg = "Too many levels: Index has only 2 levels, -5 is not a valid level number"
with pytest.raises(IndexError, match=msg):
idx.isin(vals_0, level=-5)
with pytest.raises(KeyError, match=r"'Level 1\.0 not found'"):
idx.isin(vals_0, level=1.0)
with pytest.raises(KeyError, match=r"'Level -1\.0 not found'"):
idx.isin(vals_1, level=-1.0)
with pytest.raises(KeyError, match="'Level A not found'"):
idx.isin(vals_1, level="A")
idx.names = ["A", "B"]
tm.assert_numpy_array_equal(expected, idx.isin(vals_0, level="A"))
tm.assert_numpy_array_equal(expected, idx.isin(vals_1, level="B"))
with pytest.raises(KeyError, match="'Level C not found'"):
idx.isin(vals_1, level="C")
@pytest.mark.parametrize(
"labels,expected,level",
[
([("b", np.nan)], np.array([False, False, True]), None),
([np.nan, "a"], np.array([True, True, False]), 0),
(["d", np.nan], np.array([False, True, True]), 1),
],
)
def test_isin_multi_index_with_missing_value(labels, expected, level):
# GH 19132
midx = MultiIndex.from_arrays([[np.nan, "a", "b"], ["c", "d", np.nan]])
result = midx.isin(labels, level=level)
tm.assert_numpy_array_equal(result, expected)