A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/groupby/test_any_all.py

190 lines
5.7 KiB

import builtins
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
isna,
)
import pandas._testing as tm
@pytest.mark.parametrize("agg_func", ["any", "all"])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize(
"vals",
[
["foo", "bar", "baz"],
["foo", "", ""],
["", "", ""],
[1, 2, 3],
[1, 0, 0],
[0, 0, 0],
[1.0, 2.0, 3.0],
[1.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[True, True, True],
[True, False, False],
[False, False, False],
[np.nan, np.nan, np.nan],
],
)
def test_groupby_bool_aggs(agg_func, skipna, vals):
df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2})
# Figure out expectation using Python builtin
exp = getattr(builtins, agg_func)(vals)
# edge case for missing data with skipna and 'any'
if skipna and all(isna(vals)) and agg_func == "any":
exp = False
exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key"))
result = getattr(df.groupby("key"), agg_func)(skipna=skipna)
tm.assert_frame_equal(result, exp_df)
def test_any():
df = DataFrame(
[[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]],
columns=["A", "B", "C"],
)
expected = DataFrame(
[[True, True], [False, True]], columns=["B", "C"], index=[1, 3]
)
expected.index.name = "A"
result = df.groupby("A").any()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
def test_bool_aggs_dup_column_labels(bool_agg_func):
# 21668
df = DataFrame([[True, True]], columns=["a", "a"])
grp_by = df.groupby([0])
result = getattr(grp_by, bool_agg_func)()
expected = df
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize(
"data",
[
[False, False, False],
[True, True, True],
[pd.NA, pd.NA, pd.NA],
[False, pd.NA, False],
[True, pd.NA, True],
[True, pd.NA, False],
],
)
def test_masked_kleene_logic(bool_agg_func, skipna, data):
# GH#37506
ser = Series(data, dtype="boolean")
# The result should match aggregating on the whole series. Correctness
# there is verified in test_reductions.py::test_any_all_boolean_kleene_logic
expected_data = getattr(ser, bool_agg_func)(skipna=skipna)
expected = Series(expected_data, dtype="boolean")
result = ser.groupby([0, 0, 0]).agg(bool_agg_func, skipna=skipna)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"dtype1,dtype2,exp_col1,exp_col2",
[
(
"float",
"Float64",
np.array([True], dtype=bool),
pd.array([pd.NA], dtype="boolean"),
),
(
"Int64",
"float",
pd.array([pd.NA], dtype="boolean"),
np.array([True], dtype=bool),
),
(
"Int64",
"Int64",
pd.array([pd.NA], dtype="boolean"),
pd.array([pd.NA], dtype="boolean"),
),
(
"Float64",
"boolean",
pd.array([pd.NA], dtype="boolean"),
pd.array([pd.NA], dtype="boolean"),
),
],
)
def test_masked_mixed_types(dtype1, dtype2, exp_col1, exp_col2):
# GH#37506
data = [1.0, np.nan]
df = DataFrame(
{"col1": pd.array(data, dtype=dtype1), "col2": pd.array(data, dtype=dtype2)}
)
result = df.groupby([1, 1]).agg("all", skipna=False)
expected = DataFrame({"col1": exp_col1, "col2": exp_col2}, index=[1])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
@pytest.mark.parametrize("skipna", [True, False])
def test_masked_bool_aggs_skipna(bool_agg_func, dtype, skipna, frame_or_series):
# GH#40585
obj = frame_or_series([pd.NA, 1], dtype=dtype)
expected_res = True
if not skipna and bool_agg_func == "all":
expected_res = pd.NA
expected = frame_or_series([expected_res], index=[1], dtype="boolean")
result = obj.groupby([1, 1]).agg(bool_agg_func, skipna=skipna)
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"bool_agg_func,data,expected_res",
[
("any", [pd.NA, np.nan], False),
("any", [pd.NA, 1, np.nan], True),
("all", [pd.NA, pd.NaT], True),
("all", [pd.NA, False, pd.NaT], False),
],
)
def test_object_type_missing_vals(bool_agg_func, data, expected_res, frame_or_series):
# GH#37501
obj = frame_or_series(data, dtype=object)
result = obj.groupby([1] * len(data)).agg(bool_agg_func)
expected = frame_or_series([expected_res], index=[1], dtype="bool")
tm.assert_equal(result, expected)
@pytest.mark.filterwarnings("ignore:Dropping invalid columns:FutureWarning")
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
def test_object_NA_raises_with_skipna_false(bool_agg_func):
# GH#37501
ser = Series([pd.NA], dtype=object)
with pytest.raises(TypeError, match="boolean value of NA is ambiguous"):
ser.groupby([1]).agg(bool_agg_func, skipna=False)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
def test_empty(frame_or_series, bool_agg_func):
# GH 45231
kwargs = {"columns": ["a"]} if frame_or_series is DataFrame else {"name": "a"}
obj = frame_or_series(**kwargs, dtype=object)
result = getattr(obj.groupby(obj.index), bool_agg_func)()
expected = frame_or_series(**kwargs, dtype=bool)
tm.assert_equal(result, expected)