A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/frame/test_ufunc.py

303 lines
10 KiB

from functools import partial
import numpy as np
import pytest
from pandas.compat.numpy import np_version_gte1p22
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_extension_array_dtype
dtypes = [
"int64",
"Int64",
{"A": "int64", "B": "Int64"},
]
@pytest.mark.parametrize("dtype", dtypes)
def test_unary_unary(dtype):
# unary input, unary output
values = np.array([[-1, -1], [1, 1]], dtype="int64")
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
result = np.positive(df)
expected = pd.DataFrame(
np.positive(values), index=df.index, columns=df.columns
).astype(dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", dtypes)
def test_unary_binary(request, dtype):
# unary input, binary output
if is_extension_array_dtype(dtype) or isinstance(dtype, dict):
request.node.add_marker(
pytest.mark.xfail(
reason="Extension / mixed with multiple outputs not implemented."
)
)
values = np.array([[-1, -1], [1, 1]], dtype="int64")
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
result_pandas = np.modf(df)
assert isinstance(result_pandas, tuple)
assert len(result_pandas) == 2
expected_numpy = np.modf(values)
for result, b in zip(result_pandas, expected_numpy):
expected = pd.DataFrame(b, index=df.index, columns=df.columns)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", dtypes)
def test_binary_input_dispatch_binop(dtype):
# binop ufuncs are dispatched to our dunder methods.
values = np.array([[-1, -1], [1, 1]], dtype="int64")
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
result = np.add(df, df)
expected = pd.DataFrame(
np.add(values, values), index=df.index, columns=df.columns
).astype(dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"func,arg,expected",
[
(np.add, 1, [2, 3, 4, 5]),
(
partial(np.add, where=[[False, True], [True, False]]),
np.array([[1, 1], [1, 1]]),
[0, 3, 4, 0],
),
(np.power, np.array([[1, 1], [2, 2]]), [1, 2, 9, 16]),
(np.subtract, 2, [-1, 0, 1, 2]),
(
partial(np.negative, where=np.array([[False, True], [True, False]])),
None,
[0, -2, -3, 0],
),
],
)
def test_ufunc_passes_args(func, arg, expected, request):
# GH#40662
arr = np.array([[1, 2], [3, 4]])
df = pd.DataFrame(arr)
result_inplace = np.zeros_like(arr)
# 1-argument ufunc
if arg is None:
result = func(df, out=result_inplace)
else:
result = func(df, arg, out=result_inplace)
expected = np.array(expected).reshape(2, 2)
tm.assert_numpy_array_equal(result_inplace, expected)
expected = pd.DataFrame(expected)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype_a", dtypes)
@pytest.mark.parametrize("dtype_b", dtypes)
def test_binary_input_aligns_columns(request, dtype_a, dtype_b):
if (
is_extension_array_dtype(dtype_a)
or isinstance(dtype_a, dict)
or is_extension_array_dtype(dtype_b)
or isinstance(dtype_b, dict)
):
request.node.add_marker(
pytest.mark.xfail(
reason="Extension / mixed with multiple inputs not implemented."
)
)
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}).astype(dtype_a)
if isinstance(dtype_a, dict) and isinstance(dtype_b, dict):
dtype_b["C"] = dtype_b.pop("B")
df2 = pd.DataFrame({"A": [1, 2], "C": [3, 4]}).astype(dtype_b)
with tm.assert_produces_warning(FutureWarning):
result = np.heaviside(df1, df2)
# Expected future behaviour:
# expected = np.heaviside(
# np.array([[1, 3, np.nan], [2, 4, np.nan]]),
# np.array([[1, np.nan, 3], [2, np.nan, 4]]),
# )
# expected = pd.DataFrame(expected, index=[0, 1], columns=["A", "B", "C"])
expected = pd.DataFrame([[1.0, 1.0], [1.0, 1.0]], columns=["A", "B"])
tm.assert_frame_equal(result, expected)
# ensure the expected is the same when applying with numpy array
result = np.heaviside(df1, df2.values)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", dtypes)
def test_binary_input_aligns_index(request, dtype):
if is_extension_array_dtype(dtype) or isinstance(dtype, dict):
request.node.add_marker(
pytest.mark.xfail(
reason="Extension / mixed with multiple inputs not implemented."
)
)
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).astype(dtype)
df2 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "c"]).astype(dtype)
with tm.assert_produces_warning(FutureWarning):
result = np.heaviside(df1, df2)
# Expected future behaviour:
# expected = np.heaviside(
# np.array([[1, 3], [3, 4], [np.nan, np.nan]]),
# np.array([[1, 3], [np.nan, np.nan], [3, 4]]),
# )
# # TODO(FloatArray): this will be Float64Dtype.
# expected = pd.DataFrame(expected, index=["a", "b", "c"], columns=["A", "B"])
expected = pd.DataFrame(
[[1.0, 1.0], [1.0, 1.0]], columns=["A", "B"], index=["a", "b"]
)
tm.assert_frame_equal(result, expected)
# ensure the expected is the same when applying with numpy array
result = np.heaviside(df1, df2.values)
tm.assert_frame_equal(result, expected)
@pytest.mark.filterwarnings("ignore:Calling a ufunc on non-aligned:FutureWarning")
def test_binary_frame_series_raises():
# We don't currently implement
df = pd.DataFrame({"A": [1, 2]})
# with pytest.raises(NotImplementedError, match="logaddexp"):
with pytest.raises(ValueError, match=""):
np.logaddexp(df, df["A"])
# with pytest.raises(NotImplementedError, match="logaddexp"):
with pytest.raises(ValueError, match=""):
np.logaddexp(df["A"], df)
def test_unary_accumulate_axis():
# https://github.com/pandas-dev/pandas/issues/39259
df = pd.DataFrame({"a": [1, 3, 2, 4]})
result = np.maximum.accumulate(df)
expected = pd.DataFrame({"a": [1, 3, 3, 4]})
tm.assert_frame_equal(result, expected)
df = pd.DataFrame({"a": [1, 3, 2, 4], "b": [0.1, 4.0, 3.0, 2.0]})
result = np.maximum.accumulate(df)
# in theory could preserve int dtype for default axis=0
expected = pd.DataFrame({"a": [1.0, 3.0, 3.0, 4.0], "b": [0.1, 4.0, 4.0, 4.0]})
tm.assert_frame_equal(result, expected)
result = np.maximum.accumulate(df, axis=0)
tm.assert_frame_equal(result, expected)
result = np.maximum.accumulate(df, axis=1)
expected = pd.DataFrame({"a": [1.0, 3.0, 2.0, 4.0], "b": [1.0, 4.0, 3.0, 4.0]})
tm.assert_frame_equal(result, expected)
def test_frame_outer_deprecated():
df = pd.DataFrame({"A": [1, 2]})
with tm.assert_produces_warning(FutureWarning):
np.subtract.outer(df, df)
def test_alignment_deprecation():
# https://github.com/pandas-dev/pandas/issues/39184
df1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = pd.DataFrame({"b": [1, 2, 3], "c": [4, 5, 6]})
s1 = pd.Series([1, 2], index=["a", "b"])
s2 = pd.Series([1, 2], index=["b", "c"])
# binary dataframe / dataframe
expected = pd.DataFrame({"a": [2, 4, 6], "b": [8, 10, 12]})
with tm.assert_produces_warning(None):
# aligned -> no warning!
result = np.add(df1, df1)
tm.assert_frame_equal(result, expected)
with tm.assert_produces_warning(FutureWarning):
# non-aligned -> warns
result = np.add(df1, df2)
tm.assert_frame_equal(result, expected)
result = np.add(df1, df2.values)
tm.assert_frame_equal(result, expected)
result = np.add(df1.values, df2)
expected = pd.DataFrame({"b": [2, 4, 6], "c": [8, 10, 12]})
tm.assert_frame_equal(result, expected)
# binary dataframe / series
expected = pd.DataFrame({"a": [2, 3, 4], "b": [6, 7, 8]})
with tm.assert_produces_warning(None):
# aligned -> no warning!
result = np.add(df1, s1)
tm.assert_frame_equal(result, expected)
with tm.assert_produces_warning(FutureWarning):
result = np.add(df1, s2)
tm.assert_frame_equal(result, expected)
with tm.assert_produces_warning(FutureWarning):
result = np.add(s2, df1)
tm.assert_frame_equal(result, expected)
result = np.add(df1, s2.values)
tm.assert_frame_equal(result, expected)
@td.skip_if_no("numba")
def test_alignment_deprecation_many_inputs(request):
# https://github.com/pandas-dev/pandas/issues/39184
# test that the deprecation also works with > 2 inputs -> using a numba
# written ufunc for this because numpy itself doesn't have such ufuncs
from numba import (
float64,
vectorize,
)
if np_version_gte1p22:
mark = pytest.mark.filterwarnings(
"ignore:`np.MachAr` is deprecated.*:DeprecationWarning"
)
request.node.add_marker(mark)
@vectorize([float64(float64, float64, float64)])
def my_ufunc(x, y, z):
return x + y + z
df1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = pd.DataFrame({"b": [1, 2, 3], "c": [4, 5, 6]})
df3 = pd.DataFrame({"a": [1, 2, 3], "c": [4, 5, 6]})
with tm.assert_produces_warning(FutureWarning):
result = my_ufunc(df1, df2, df3)
expected = pd.DataFrame([[3.0, 12.0], [6.0, 15.0], [9.0, 18.0]], columns=["a", "b"])
tm.assert_frame_equal(result, expected)
# all aligned -> no warning
with tm.assert_produces_warning(None):
result = my_ufunc(df1, df1, df1)
tm.assert_frame_equal(result, expected)
# mixed frame / arrays
with tm.assert_produces_warning(FutureWarning):
result = my_ufunc(df1, df2, df3.values)
tm.assert_frame_equal(result, expected)
# single frame -> no warning
with tm.assert_produces_warning(None):
result = my_ufunc(df1, df2.values, df3.values)
tm.assert_frame_equal(result, expected)
# takes indices of first frame
with tm.assert_produces_warning(FutureWarning):
result = my_ufunc(df1.values, df2, df3)
expected = expected.set_axis(["b", "c"], axis=1)
tm.assert_frame_equal(result, expected)