A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/frame/methods/test_pop.py

71 lines
2.1 KiB

import numpy as np
from pandas import (
DataFrame,
MultiIndex,
Series,
)
import pandas._testing as tm
class TestDataFramePop:
def test_pop(self, float_frame):
float_frame.columns.name = "baz"
float_frame.pop("A")
assert "A" not in float_frame
float_frame["foo"] = "bar"
float_frame.pop("foo")
assert "foo" not in float_frame
assert float_frame.columns.name == "baz"
# gh-10912: inplace ops cause caching issue
a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"])
b = a.pop("B")
b += 1
# original frame
expected = DataFrame([[1, 3], [4, 6]], columns=["A", "C"], index=["X", "Y"])
tm.assert_frame_equal(a, expected)
# result
expected = Series([2, 5], index=["X", "Y"], name="B") + 1
tm.assert_series_equal(b, expected)
def test_pop_non_unique_cols(self):
df = DataFrame({0: [0, 1], 1: [0, 1], 2: [4, 5]})
df.columns = ["a", "b", "a"]
res = df.pop("a")
assert type(res) == DataFrame
assert len(res) == 2
assert len(df.columns) == 1
assert "b" in df.columns
assert "a" not in df.columns
assert len(df.index) == 2
def test_mixed_depth_pop(self):
arrays = [
["a", "top", "top", "routine1", "routine1", "routine2"],
["", "OD", "OD", "result1", "result2", "result1"],
["", "wx", "wy", "", "", ""],
]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(np.random.randn(4, 6), columns=index)
df1 = df.copy()
df2 = df.copy()
result = df1.pop("a")
expected = df2.pop(("a", "", ""))
tm.assert_series_equal(expected, result, check_names=False)
tm.assert_frame_equal(df1, df2)
assert result.name == "a"
expected = df1["top"]
df1 = df1.drop(["top"], axis=1)
result = df2.pop("top")
tm.assert_frame_equal(expected, result)
tm.assert_frame_equal(df1, df2)