A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/arrays/test_timedeltas.py

126 lines
4.0 KiB

import numpy as np
import pytest
import pandas as pd
from pandas import Timedelta
import pandas._testing as tm
from pandas.core.arrays import TimedeltaArray
class TestTimedeltaArray:
@pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
def test_astype_int(self, dtype):
arr = TimedeltaArray._from_sequence([Timedelta("1H"), Timedelta("2H")])
result = arr.astype(dtype)
if np.dtype(dtype).kind == "u":
expected_dtype = np.dtype("uint64")
else:
expected_dtype = np.dtype("int64")
expected = arr.astype(expected_dtype)
assert result.dtype == expected_dtype
tm.assert_numpy_array_equal(result, expected)
def test_setitem_clears_freq(self):
a = TimedeltaArray(pd.timedelta_range("1H", periods=2, freq="H"))
a[0] = Timedelta("1H")
assert a.freq is None
@pytest.mark.parametrize(
"obj",
[
Timedelta(seconds=1),
Timedelta(seconds=1).to_timedelta64(),
Timedelta(seconds=1).to_pytimedelta(),
],
)
def test_setitem_objects(self, obj):
# make sure we accept timedelta64 and timedelta in addition to Timedelta
tdi = pd.timedelta_range("2 Days", periods=4, freq="H")
arr = TimedeltaArray(tdi, freq=tdi.freq)
arr[0] = obj
assert arr[0] == Timedelta(seconds=1)
@pytest.mark.parametrize(
"other",
[
1,
np.int64(1),
1.0,
np.datetime64("NaT"),
pd.Timestamp("2021-01-01"),
"invalid",
np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
(np.arange(10) * 24 * 3600 * 10**9).view("datetime64[ns]"),
pd.Timestamp("2021-01-01").to_period("D"),
],
)
@pytest.mark.parametrize("index", [True, False])
def test_searchsorted_invalid_types(self, other, index):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = TimedeltaArray(data, freq="D")
if index:
arr = pd.Index(arr)
msg = "|".join(
[
"searchsorted requires compatible dtype or scalar",
"value should be a 'Timedelta', 'NaT', or array of those. Got",
]
)
with pytest.raises(TypeError, match=msg):
arr.searchsorted(other)
class TestUnaryOps:
def test_abs(self):
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
arr = TimedeltaArray(vals)
evals = np.array([3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
expected = TimedeltaArray(evals)
result = abs(arr)
tm.assert_timedelta_array_equal(result, expected)
result2 = np.abs(arr)
tm.assert_timedelta_array_equal(result2, expected)
def test_pos(self):
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
arr = TimedeltaArray(vals)
result = +arr
tm.assert_timedelta_array_equal(result, arr)
assert not tm.shares_memory(result, arr)
result2 = np.positive(arr)
tm.assert_timedelta_array_equal(result2, arr)
assert not tm.shares_memory(result2, arr)
def test_neg(self):
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
arr = TimedeltaArray(vals)
evals = np.array([3600 * 10**9, "NaT", -7200 * 10**9], dtype="m8[ns]")
expected = TimedeltaArray(evals)
result = -arr
tm.assert_timedelta_array_equal(result, expected)
result2 = np.negative(arr)
tm.assert_timedelta_array_equal(result2, expected)
def test_neg_freq(self):
tdi = pd.timedelta_range("2 Days", periods=4, freq="H")
arr = TimedeltaArray(tdi, freq=tdi.freq)
expected = TimedeltaArray(-tdi._data, freq=-tdi.freq)
result = -arr
tm.assert_timedelta_array_equal(result, expected)
result2 = np.negative(arr)
tm.assert_timedelta_array_equal(result2, expected)