A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/arithmetic/test_categorical.py

25 lines
742 B

import numpy as np
from pandas import (
Categorical,
Series,
)
import pandas._testing as tm
class TestCategoricalComparisons:
def test_categorical_nan_equality(self):
cat = Series(Categorical(["a", "b", "c", np.nan]))
expected = Series([True, True, True, False])
result = cat == cat
tm.assert_series_equal(result, expected)
def test_categorical_tuple_equality(self):
# GH 18050
ser = Series([(0, 0), (0, 1), (0, 0), (1, 0), (1, 1)])
expected = Series([True, False, True, False, False])
result = ser == (0, 0)
tm.assert_series_equal(result, expected)
result = ser.astype("category") == (0, 0)
tm.assert_series_equal(result, expected)