A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/apply/test_str.py

302 lines
9.6 KiB

from itertools import chain
import operator
import numpy as np
import pytest
from pandas.core.dtypes.common import is_number
from pandas import (
DataFrame,
Index,
Series,
)
import pandas._testing as tm
from pandas.core.groupby.base import maybe_normalize_deprecated_kernels
from pandas.tests.apply.common import (
frame_transform_kernels,
series_transform_kernels,
)
@pytest.mark.parametrize("func", ["sum", "mean", "min", "max", "std"])
@pytest.mark.parametrize(
"args,kwds",
[
pytest.param([], {}, id="no_args_or_kwds"),
pytest.param([1], {}, id="axis_from_args"),
pytest.param([], {"axis": 1}, id="axis_from_kwds"),
pytest.param([], {"numeric_only": True}, id="optional_kwds"),
pytest.param([1, True], {"numeric_only": True}, id="args_and_kwds"),
],
)
@pytest.mark.parametrize("how", ["agg", "apply"])
def test_apply_with_string_funcs(request, float_frame, func, args, kwds, how):
if len(args) > 1 and how == "agg":
request.node.add_marker(
pytest.mark.xfail(
raises=TypeError,
reason="agg/apply signature mismatch - agg passes 2nd "
"argument to func",
)
)
result = getattr(float_frame, how)(func, *args, **kwds)
expected = getattr(float_frame, func)(*args, **kwds)
tm.assert_series_equal(result, expected)
def test_with_string_args(datetime_series):
for arg in ["sum", "mean", "min", "max", "std"]:
result = datetime_series.apply(arg)
expected = getattr(datetime_series, arg)()
assert result == expected
@pytest.mark.parametrize("op", ["mean", "median", "std", "var"])
@pytest.mark.parametrize("how", ["agg", "apply"])
def test_apply_np_reducer(float_frame, op, how):
# GH 39116
float_frame = DataFrame({"a": [1, 2], "b": [3, 4]})
result = getattr(float_frame, how)(op)
# pandas ddof defaults to 1, numpy to 0
kwargs = {"ddof": 1} if op in ("std", "var") else {}
expected = Series(
getattr(np, op)(float_frame, axis=0, **kwargs), index=float_frame.columns
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"op", ["abs", "ceil", "cos", "cumsum", "exp", "log", "sqrt", "square"]
)
@pytest.mark.parametrize("how", ["transform", "apply"])
def test_apply_np_transformer(float_frame, op, how):
# GH 39116
# float_frame will _usually_ have negative values, which will
# trigger the warning here, but let's put one in just to be sure
float_frame.iloc[0, 0] = -1.0
warn = None
if op in ["log", "sqrt"]:
warn = RuntimeWarning
with tm.assert_produces_warning(warn):
result = getattr(float_frame, how)(op)
expected = getattr(np, op)(float_frame)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"series, func, expected",
chain(
tm.get_cython_table_params(
Series(dtype=np.float64),
[
("sum", 0),
("max", np.nan),
("min", np.nan),
("all", True),
("any", False),
("mean", np.nan),
("prod", 1),
("std", np.nan),
("var", np.nan),
("median", np.nan),
],
),
tm.get_cython_table_params(
Series([np.nan, 1, 2, 3]),
[
("sum", 6),
("max", 3),
("min", 1),
("all", True),
("any", True),
("mean", 2),
("prod", 6),
("std", 1),
("var", 1),
("median", 2),
],
),
tm.get_cython_table_params(
Series("a b c".split()),
[
("sum", "abc"),
("max", "c"),
("min", "a"),
("all", True),
("any", True),
],
),
),
)
def test_agg_cython_table_series(series, func, expected):
# GH21224
# test reducing functions in
# pandas.core.base.SelectionMixin._cython_table
result = series.agg(func)
if is_number(expected):
assert np.isclose(result, expected, equal_nan=True)
else:
assert result == expected
@pytest.mark.parametrize(
"series, func, expected",
chain(
tm.get_cython_table_params(
Series(dtype=np.float64),
[
("cumprod", Series([], Index([]), dtype=np.float64)),
("cumsum", Series([], Index([]), dtype=np.float64)),
],
),
tm.get_cython_table_params(
Series([np.nan, 1, 2, 3]),
[
("cumprod", Series([np.nan, 1, 2, 6])),
("cumsum", Series([np.nan, 1, 3, 6])),
],
),
tm.get_cython_table_params(
Series("a b c".split()), [("cumsum", Series(["a", "ab", "abc"]))]
),
),
)
def test_agg_cython_table_transform_series(series, func, expected):
# GH21224
# test transforming functions in
# pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum)
result = series.agg(func)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"df, func, expected",
chain(
tm.get_cython_table_params(
DataFrame(),
[
("sum", Series(dtype="float64")),
("max", Series(dtype="float64")),
("min", Series(dtype="float64")),
("all", Series(dtype=bool)),
("any", Series(dtype=bool)),
("mean", Series(dtype="float64")),
("prod", Series(dtype="float64")),
("std", Series(dtype="float64")),
("var", Series(dtype="float64")),
("median", Series(dtype="float64")),
],
),
tm.get_cython_table_params(
DataFrame([[np.nan, 1], [1, 2]]),
[
("sum", Series([1.0, 3])),
("max", Series([1.0, 2])),
("min", Series([1.0, 1])),
("all", Series([True, True])),
("any", Series([True, True])),
("mean", Series([1, 1.5])),
("prod", Series([1.0, 2])),
("std", Series([np.nan, 0.707107])),
("var", Series([np.nan, 0.5])),
("median", Series([1, 1.5])),
],
),
),
)
def test_agg_cython_table_frame(df, func, expected, axis):
# GH 21224
# test reducing functions in
# pandas.core.base.SelectionMixin._cython_table
result = df.agg(func, axis=axis)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"df, func, expected",
chain(
tm.get_cython_table_params(
DataFrame(), [("cumprod", DataFrame()), ("cumsum", DataFrame())]
),
tm.get_cython_table_params(
DataFrame([[np.nan, 1], [1, 2]]),
[
("cumprod", DataFrame([[np.nan, 1], [1, 2]])),
("cumsum", DataFrame([[np.nan, 1], [1, 3]])),
],
),
),
)
def test_agg_cython_table_transform_frame(df, func, expected, axis):
# GH 21224
# test transforming functions in
# pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum)
if axis == "columns" or axis == 1:
# operating blockwise doesn't let us preserve dtypes
expected = expected.astype("float64")
result = df.agg(func, axis=axis)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("op", series_transform_kernels)
def test_transform_groupby_kernel_series(string_series, op):
# GH 35964
# TODO(2.0) Remove after pad/backfill deprecation enforced
op = maybe_normalize_deprecated_kernels(op)
args = [0.0] if op == "fillna" else []
ones = np.ones(string_series.shape[0])
expected = string_series.groupby(ones).transform(op, *args)
result = string_series.transform(op, 0, *args)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("op", frame_transform_kernels)
def test_transform_groupby_kernel_frame(
axis, float_frame, op, using_array_manager, request
):
# TODO(2.0) Remove after pad/backfill deprecation enforced
op = maybe_normalize_deprecated_kernels(op)
# GH 35964
if using_array_manager and op == "pct_change" and axis in (1, "columns"):
# TODO(ArrayManager) shift with axis=1
request.node.add_marker(
pytest.mark.xfail(
reason="shift axis=1 not yet implemented for ArrayManager"
)
)
args = [0.0] if op == "fillna" else []
if axis == 0 or axis == "index":
ones = np.ones(float_frame.shape[0])
else:
ones = np.ones(float_frame.shape[1])
expected = float_frame.groupby(ones, axis=axis).transform(op, *args)
result = float_frame.transform(op, axis, *args)
tm.assert_frame_equal(result, expected)
# same thing, but ensuring we have multiple blocks
assert "E" not in float_frame.columns
float_frame["E"] = float_frame["A"].copy()
assert len(float_frame._mgr.arrays) > 1
if axis == 0 or axis == "index":
ones = np.ones(float_frame.shape[0])
else:
ones = np.ones(float_frame.shape[1])
expected2 = float_frame.groupby(ones, axis=axis).transform(op, *args)
result2 = float_frame.transform(op, axis, *args)
tm.assert_frame_equal(result2, expected2)
@pytest.mark.parametrize("method", ["abs", "shift", "pct_change", "cumsum", "rank"])
def test_transform_method_name(method):
# GH 19760
df = DataFrame({"A": [-1, 2]})
result = df.transform(method)
expected = operator.methodcaller(method)(df)
tm.assert_frame_equal(result, expected)