A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/plotting/_matplotlib/boxplot.py

506 lines
16 KiB

from __future__ import annotations
from typing import (
TYPE_CHECKING,
NamedTuple,
)
import warnings
from matplotlib.artist import setp
import numpy as np
from pandas.core.dtypes.common import is_dict_like
from pandas.core.dtypes.missing import remove_na_arraylike
import pandas as pd
import pandas.core.common as com
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.core import (
LinePlot,
MPLPlot,
)
from pandas.plotting._matplotlib.groupby import create_iter_data_given_by
from pandas.plotting._matplotlib.style import get_standard_colors
from pandas.plotting._matplotlib.tools import (
create_subplots,
flatten_axes,
maybe_adjust_figure,
)
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.lines import Line2D
class BoxPlot(LinePlot):
_kind = "box"
_layout_type = "horizontal"
_valid_return_types = (None, "axes", "dict", "both")
class BP(NamedTuple):
# namedtuple to hold results
ax: Axes
lines: dict[str, list[Line2D]]
def __init__(self, data, return_type="axes", **kwargs):
# Do not call LinePlot.__init__ which may fill nan
if return_type not in self._valid_return_types:
raise ValueError("return_type must be {None, 'axes', 'dict', 'both'}")
self.return_type = return_type
MPLPlot.__init__(self, data, **kwargs)
def _args_adjust(self):
if self.subplots:
# Disable label ax sharing. Otherwise, all subplots shows last
# column label
if self.orientation == "vertical":
self.sharex = False
else:
self.sharey = False
@classmethod
def _plot(cls, ax, y, column_num=None, return_type="axes", **kwds):
if y.ndim == 2:
y = [remove_na_arraylike(v) for v in y]
# Boxplot fails with empty arrays, so need to add a NaN
# if any cols are empty
# GH 8181
y = [v if v.size > 0 else np.array([np.nan]) for v in y]
else:
y = remove_na_arraylike(y)
bp = ax.boxplot(y, **kwds)
if return_type == "dict":
return bp, bp
elif return_type == "both":
return cls.BP(ax=ax, lines=bp), bp
else:
return ax, bp
def _validate_color_args(self):
if "color" in self.kwds:
if self.colormap is not None:
warnings.warn(
"'color' and 'colormap' cannot be used "
"simultaneously. Using 'color'"
)
self.color = self.kwds.pop("color")
if isinstance(self.color, dict):
valid_keys = ["boxes", "whiskers", "medians", "caps"]
for key in self.color:
if key not in valid_keys:
raise ValueError(
f"color dict contains invalid key '{key}'. "
f"The key must be either {valid_keys}"
)
else:
self.color = None
# get standard colors for default
colors = get_standard_colors(num_colors=3, colormap=self.colormap, color=None)
# use 2 colors by default, for box/whisker and median
# flier colors isn't needed here
# because it can be specified by ``sym`` kw
self._boxes_c = colors[0]
self._whiskers_c = colors[0]
self._medians_c = colors[2]
self._caps_c = colors[0]
def _get_colors(self, num_colors=None, color_kwds="color"):
pass
def maybe_color_bp(self, bp):
if isinstance(self.color, dict):
boxes = self.color.get("boxes", self._boxes_c)
whiskers = self.color.get("whiskers", self._whiskers_c)
medians = self.color.get("medians", self._medians_c)
caps = self.color.get("caps", self._caps_c)
else:
# Other types are forwarded to matplotlib
# If None, use default colors
boxes = self.color or self._boxes_c
whiskers = self.color or self._whiskers_c
medians = self.color or self._medians_c
caps = self.color or self._caps_c
# GH 30346, when users specifying those arguments explicitly, our defaults
# for these four kwargs should be overridden; if not, use Pandas settings
if not self.kwds.get("boxprops"):
setp(bp["boxes"], color=boxes, alpha=1)
if not self.kwds.get("whiskerprops"):
setp(bp["whiskers"], color=whiskers, alpha=1)
if not self.kwds.get("medianprops"):
setp(bp["medians"], color=medians, alpha=1)
if not self.kwds.get("capprops"):
setp(bp["caps"], color=caps, alpha=1)
def _make_plot(self):
if self.subplots:
self._return_obj = pd.Series(dtype=object)
# Re-create iterated data if `by` is assigned by users
data = (
create_iter_data_given_by(self.data, self._kind)
if self.by is not None
else self.data
)
for i, (label, y) in enumerate(self._iter_data(data=data)):
ax = self._get_ax(i)
kwds = self.kwds.copy()
# When by is applied, show title for subplots to know which group it is
# just like df.boxplot, and need to apply T on y to provide right input
if self.by is not None:
y = y.T
ax.set_title(pprint_thing(label))
# When `by` is assigned, the ticklabels will become unique grouped
# values, instead of label which is used as subtitle in this case.
ticklabels = [
pprint_thing(col) for col in self.data.columns.levels[0]
]
else:
ticklabels = [pprint_thing(label)]
ret, bp = self._plot(
ax, y, column_num=i, return_type=self.return_type, **kwds
)
self.maybe_color_bp(bp)
self._return_obj[label] = ret
self._set_ticklabels(ax, ticklabels)
else:
y = self.data.values.T
ax = self._get_ax(0)
kwds = self.kwds.copy()
ret, bp = self._plot(
ax, y, column_num=0, return_type=self.return_type, **kwds
)
self.maybe_color_bp(bp)
self._return_obj = ret
labels = [left for left, _ in self._iter_data()]
labels = [pprint_thing(left) for left in labels]
if not self.use_index:
labels = [pprint_thing(key) for key in range(len(labels))]
self._set_ticklabels(ax, labels)
def _set_ticklabels(self, ax: Axes, labels):
if self.orientation == "vertical":
ax.set_xticklabels(labels)
else:
ax.set_yticklabels(labels)
def _make_legend(self):
pass
def _post_plot_logic(self, ax, data):
pass
@property
def orientation(self):
if self.kwds.get("vert", True):
return "vertical"
else:
return "horizontal"
@property
def result(self):
if self.return_type is None:
return super().result
else:
return self._return_obj
def _grouped_plot_by_column(
plotf,
data,
columns=None,
by=None,
numeric_only=True,
grid=False,
figsize=None,
ax=None,
layout=None,
return_type=None,
**kwargs,
):
grouped = data.groupby(by)
if columns is None:
if not isinstance(by, (list, tuple)):
by = [by]
columns = data._get_numeric_data().columns.difference(by)
naxes = len(columns)
fig, axes = create_subplots(
naxes=naxes, sharex=True, sharey=True, figsize=figsize, ax=ax, layout=layout
)
_axes = flatten_axes(axes)
ax_values = []
for i, col in enumerate(columns):
ax = _axes[i]
gp_col = grouped[col]
keys, values = zip(*gp_col)
re_plotf = plotf(keys, values, ax, **kwargs)
ax.set_title(col)
ax.set_xlabel(pprint_thing(by))
ax_values.append(re_plotf)
ax.grid(grid)
result = pd.Series(ax_values, index=columns)
# Return axes in multiplot case, maybe revisit later # 985
if return_type is None:
result = axes
byline = by[0] if len(by) == 1 else by
fig.suptitle(f"Boxplot grouped by {byline}")
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
return result
def boxplot(
data,
column=None,
by=None,
ax=None,
fontsize=None,
rot=0,
grid=True,
figsize=None,
layout=None,
return_type=None,
**kwds,
):
import matplotlib.pyplot as plt
# validate return_type:
if return_type not in BoxPlot._valid_return_types:
raise ValueError("return_type must be {'axes', 'dict', 'both'}")
if isinstance(data, pd.Series):
data = data.to_frame("x")
column = "x"
def _get_colors():
# num_colors=3 is required as method maybe_color_bp takes the colors
# in positions 0 and 2.
# if colors not provided, use same defaults as DataFrame.plot.box
result = get_standard_colors(num_colors=3)
result = np.take(result, [0, 0, 2])
result = np.append(result, "k")
colors = kwds.pop("color", None)
if colors:
if is_dict_like(colors):
# replace colors in result array with user-specified colors
# taken from the colors dict parameter
# "boxes" value placed in position 0, "whiskers" in 1, etc.
valid_keys = ["boxes", "whiskers", "medians", "caps"]
key_to_index = dict(zip(valid_keys, range(4)))
for key, value in colors.items():
if key in valid_keys:
result[key_to_index[key]] = value
else:
raise ValueError(
f"color dict contains invalid key '{key}'. "
f"The key must be either {valid_keys}"
)
else:
result.fill(colors)
return result
def maybe_color_bp(bp, **kwds):
# GH 30346, when users specifying those arguments explicitly, our defaults
# for these four kwargs should be overridden; if not, use Pandas settings
if not kwds.get("boxprops"):
setp(bp["boxes"], color=colors[0], alpha=1)
if not kwds.get("whiskerprops"):
setp(bp["whiskers"], color=colors[1], alpha=1)
if not kwds.get("medianprops"):
setp(bp["medians"], color=colors[2], alpha=1)
if not kwds.get("capprops"):
setp(bp["caps"], color=colors[3], alpha=1)
def plot_group(keys, values, ax: Axes):
keys = [pprint_thing(x) for x in keys]
values = [np.asarray(remove_na_arraylike(v), dtype=object) for v in values]
bp = ax.boxplot(values, **kwds)
if fontsize is not None:
ax.tick_params(axis="both", labelsize=fontsize)
if kwds.get("vert", 1):
ticks = ax.get_xticks()
if len(ticks) != len(keys):
i, remainder = divmod(len(ticks), len(keys))
assert remainder == 0, remainder
keys *= i
ax.set_xticklabels(keys, rotation=rot)
else:
ax.set_yticklabels(keys, rotation=rot)
maybe_color_bp(bp, **kwds)
# Return axes in multiplot case, maybe revisit later # 985
if return_type == "dict":
return bp
elif return_type == "both":
return BoxPlot.BP(ax=ax, lines=bp)
else:
return ax
colors = _get_colors()
if column is None:
columns = None
else:
if isinstance(column, (list, tuple)):
columns = column
else:
columns = [column]
if by is not None:
# Prefer array return type for 2-D plots to match the subplot layout
# https://github.com/pandas-dev/pandas/pull/12216#issuecomment-241175580
result = _grouped_plot_by_column(
plot_group,
data,
columns=columns,
by=by,
grid=grid,
figsize=figsize,
ax=ax,
layout=layout,
return_type=return_type,
)
else:
if return_type is None:
return_type = "axes"
if layout is not None:
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
if ax is None:
rc = {"figure.figsize": figsize} if figsize is not None else {}
with plt.rc_context(rc):
ax = plt.gca()
data = data._get_numeric_data()
naxes = len(data.columns)
if naxes == 0:
raise ValueError(
"boxplot method requires numerical columns, nothing to plot."
)
if columns is None:
columns = data.columns
else:
data = data[columns]
result = plot_group(columns, data.values.T, ax)
ax.grid(grid)
return result
def boxplot_frame(
self,
column=None,
by=None,
ax=None,
fontsize=None,
rot=0,
grid=True,
figsize=None,
layout=None,
return_type=None,
**kwds,
):
import matplotlib.pyplot as plt
ax = boxplot(
self,
column=column,
by=by,
ax=ax,
fontsize=fontsize,
grid=grid,
rot=rot,
figsize=figsize,
layout=layout,
return_type=return_type,
**kwds,
)
plt.draw_if_interactive()
return ax
def boxplot_frame_groupby(
grouped,
subplots=True,
column=None,
fontsize=None,
rot=0,
grid=True,
ax=None,
figsize=None,
layout=None,
sharex=False,
sharey=True,
**kwds,
):
if subplots is True:
naxes = len(grouped)
fig, axes = create_subplots(
naxes=naxes,
squeeze=False,
ax=ax,
sharex=sharex,
sharey=sharey,
figsize=figsize,
layout=layout,
)
axes = flatten_axes(axes)
ret = pd.Series(dtype=object)
for (key, group), ax in zip(grouped, axes):
d = group.boxplot(
ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds
)
ax.set_title(pprint_thing(key))
ret.loc[key] = d
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
else:
keys, frames = zip(*grouped)
if grouped.axis == 0:
df = pd.concat(frames, keys=keys, axis=1)
else:
if len(frames) > 1:
df = frames[0].join(frames[1::])
else:
df = frames[0]
# GH 16748, DataFrameGroupby fails when subplots=False and `column` argument
# is assigned, and in this case, since `df` here becomes MI after groupby,
# so we need to couple the keys (grouped values) and column (original df
# column) together to search for subset to plot
if column is not None:
column = com.convert_to_list_like(column)
multi_key = pd.MultiIndex.from_product([keys, column])
column = list(multi_key.values)
ret = df.boxplot(
column=column,
fontsize=fontsize,
rot=rot,
grid=grid,
ax=ax,
figsize=figsize,
layout=layout,
**kwds,
)
return ret