A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/io/sas/sasreader.py

158 lines
4.2 KiB

"""
Read SAS sas7bdat or xport files.
"""
from __future__ import annotations
from abc import (
ABCMeta,
abstractmethod,
)
from typing import (
TYPE_CHECKING,
Hashable,
overload,
)
from pandas._typing import (
FilePath,
ReadBuffer,
)
from pandas.io.common import stringify_path
if TYPE_CHECKING:
from pandas import DataFrame
# TODO(PY38): replace with Protocol in Python 3.8
class ReaderBase(metaclass=ABCMeta):
"""
Protocol for XportReader and SAS7BDATReader classes.
"""
@abstractmethod
def read(self, nrows=None):
pass
@abstractmethod
def close(self):
pass
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
@overload
def read_sas(
filepath_or_buffer: FilePath | ReadBuffer[bytes],
format: str | None = ...,
index: Hashable | None = ...,
encoding: str | None = ...,
chunksize: int = ...,
iterator: bool = ...,
) -> ReaderBase:
...
@overload
def read_sas(
filepath_or_buffer: FilePath | ReadBuffer[bytes],
format: str | None = ...,
index: Hashable | None = ...,
encoding: str | None = ...,
chunksize: None = ...,
iterator: bool = ...,
) -> DataFrame | ReaderBase:
...
def read_sas(
filepath_or_buffer: FilePath | ReadBuffer[bytes],
format: str | None = None,
index: Hashable | None = None,
encoding: str | None = None,
chunksize: int | None = None,
iterator: bool = False,
) -> DataFrame | ReaderBase:
"""
Read SAS files stored as either XPORT or SAS7BDAT format files.
Parameters
----------
filepath_or_buffer : str, path object, or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``read()`` function. The string could be a URL.
Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be:
``file://localhost/path/to/table.sas``.
format : str {'xport', 'sas7bdat'} or None
If None, file format is inferred from file extension. If 'xport' or
'sas7bdat', uses the corresponding format.
index : identifier of index column, defaults to None
Identifier of column that should be used as index of the DataFrame.
encoding : str, default is None
Encoding for text data. If None, text data are stored as raw bytes.
chunksize : int
Read file `chunksize` lines at a time, returns iterator.
.. versionchanged:: 1.2
``TextFileReader`` is a context manager.
iterator : bool, defaults to False
If True, returns an iterator for reading the file incrementally.
.. versionchanged:: 1.2
``TextFileReader`` is a context manager.
Returns
-------
DataFrame if iterator=False and chunksize=None, else SAS7BDATReader
or XportReader
"""
if format is None:
buffer_error_msg = (
"If this is a buffer object rather "
"than a string name, you must specify a format string"
)
filepath_or_buffer = stringify_path(filepath_or_buffer)
if not isinstance(filepath_or_buffer, str):
raise ValueError(buffer_error_msg)
fname = filepath_or_buffer.lower()
if fname.endswith(".xpt"):
format = "xport"
elif fname.endswith(".sas7bdat"):
format = "sas7bdat"
else:
raise ValueError("unable to infer format of SAS file")
reader: ReaderBase
if format.lower() == "xport":
from pandas.io.sas.sas_xport import XportReader
reader = XportReader(
filepath_or_buffer,
index=index,
encoding=encoding,
chunksize=chunksize,
)
elif format.lower() == "sas7bdat":
from pandas.io.sas.sas7bdat import SAS7BDATReader
reader = SAS7BDATReader(
filepath_or_buffer,
index=index,
encoding=encoding,
chunksize=chunksize,
)
else:
raise ValueError("unknown SAS format")
if iterator or chunksize:
return reader
with reader:
return reader.read()