A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/io/sas/sas_xport.py

496 lines
14 KiB

"""
Read a SAS XPort format file into a Pandas DataFrame.
Based on code from Jack Cushman (github.com/jcushman/xport).
The file format is defined here:
https://support.sas.com/content/dam/SAS/support/en/technical-papers/record-layout-of-a-sas-version-5-or-6-data-set-in-sas-transport-xport-format.pdf
"""
from __future__ import annotations
from collections import abc
from datetime import datetime
import struct
import warnings
import numpy as np
from pandas._typing import (
FilePath,
ReadBuffer,
)
from pandas.util._decorators import Appender
import pandas as pd
from pandas.io.common import get_handle
from pandas.io.sas.sasreader import ReaderBase
_correct_line1 = (
"HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!"
"000000000000000000000000000000 "
)
_correct_header1 = (
"HEADER RECORD*******MEMBER HEADER RECORD!!!!!!!000000000000000001600000000"
)
_correct_header2 = (
"HEADER RECORD*******DSCRPTR HEADER RECORD!!!!!!!"
"000000000000000000000000000000 "
)
_correct_obs_header = (
"HEADER RECORD*******OBS HEADER RECORD!!!!!!!"
"000000000000000000000000000000 "
)
_fieldkeys = [
"ntype",
"nhfun",
"field_length",
"nvar0",
"name",
"label",
"nform",
"nfl",
"num_decimals",
"nfj",
"nfill",
"niform",
"nifl",
"nifd",
"npos",
"_",
]
_base_params_doc = """\
Parameters
----------
filepath_or_buffer : str or file-like object
Path to SAS file or object implementing binary read method."""
_params2_doc = """\
index : identifier of index column
Identifier of column that should be used as index of the DataFrame.
encoding : str
Encoding for text data.
chunksize : int
Read file `chunksize` lines at a time, returns iterator."""
_format_params_doc = """\
format : str
File format, only `xport` is currently supported."""
_iterator_doc = """\
iterator : bool, default False
Return XportReader object for reading file incrementally."""
_read_sas_doc = f"""Read a SAS file into a DataFrame.
{_base_params_doc}
{_format_params_doc}
{_params2_doc}
{_iterator_doc}
Returns
-------
DataFrame or XportReader
Examples
--------
Read a SAS Xport file:
>>> df = pd.read_sas('filename.XPT')
Read a Xport file in 10,000 line chunks:
>>> itr = pd.read_sas('filename.XPT', chunksize=10000)
>>> for chunk in itr:
>>> do_something(chunk)
"""
_xport_reader_doc = f"""\
Class for reading SAS Xport files.
{_base_params_doc}
{_params2_doc}
Attributes
----------
member_info : list
Contains information about the file
fields : list
Contains information about the variables in the file
"""
_read_method_doc = """\
Read observations from SAS Xport file, returning as data frame.
Parameters
----------
nrows : int
Number of rows to read from data file; if None, read whole
file.
Returns
-------
A DataFrame.
"""
def _parse_date(datestr: str) -> datetime:
"""Given a date in xport format, return Python date."""
try:
# e.g. "16FEB11:10:07:55"
return datetime.strptime(datestr, "%d%b%y:%H:%M:%S")
except ValueError:
return pd.NaT
def _split_line(s: str, parts):
"""
Parameters
----------
s: str
Fixed-length string to split
parts: list of (name, length) pairs
Used to break up string, name '_' will be filtered from output.
Returns
-------
Dict of name:contents of string at given location.
"""
out = {}
start = 0
for name, length in parts:
out[name] = s[start : start + length].strip()
start += length
del out["_"]
return out
def _handle_truncated_float_vec(vec, nbytes):
# This feature is not well documented, but some SAS XPORT files
# have 2-7 byte "truncated" floats. To read these truncated
# floats, pad them with zeros on the right to make 8 byte floats.
#
# References:
# https://github.com/jcushman/xport/pull/3
# The R "foreign" library
if nbytes != 8:
vec1 = np.zeros(len(vec), np.dtype("S8"))
dtype = np.dtype(f"S{nbytes},S{8 - nbytes}")
vec2 = vec1.view(dtype=dtype)
vec2["f0"] = vec
return vec2
return vec
def _parse_float_vec(vec):
"""
Parse a vector of float values representing IBM 8 byte floats into
native 8 byte floats.
"""
dtype = np.dtype(">u4,>u4")
vec1 = vec.view(dtype=dtype)
xport1 = vec1["f0"]
xport2 = vec1["f1"]
# Start by setting first half of ieee number to first half of IBM
# number sans exponent
ieee1 = xport1 & 0x00FFFFFF
# The fraction bit to the left of the binary point in the ieee
# format was set and the number was shifted 0, 1, 2, or 3
# places. This will tell us how to adjust the ibm exponent to be a
# power of 2 ieee exponent and how to shift the fraction bits to
# restore the correct magnitude.
shift = np.zeros(len(vec), dtype=np.uint8)
shift[np.where(xport1 & 0x00200000)] = 1
shift[np.where(xport1 & 0x00400000)] = 2
shift[np.where(xport1 & 0x00800000)] = 3
# shift the ieee number down the correct number of places then
# set the second half of the ieee number to be the second half
# of the ibm number shifted appropriately, ored with the bits
# from the first half that would have been shifted in if we
# could shift a double. All we are worried about are the low
# order 3 bits of the first half since we're only shifting by
# 1, 2, or 3.
ieee1 >>= shift
ieee2 = (xport2 >> shift) | ((xport1 & 0x00000007) << (29 + (3 - shift)))
# clear the 1 bit to the left of the binary point
ieee1 &= 0xFFEFFFFF
# set the exponent of the ieee number to be the actual exponent
# plus the shift count + 1023. Or this into the first half of the
# ieee number. The ibm exponent is excess 64 but is adjusted by 65
# since during conversion to ibm format the exponent is
# incremented by 1 and the fraction bits left 4 positions to the
# right of the radix point. (had to add >> 24 because C treats &
# 0x7f as 0x7f000000 and Python doesn't)
ieee1 |= ((((((xport1 >> 24) & 0x7F) - 65) << 2) + shift + 1023) << 20) | (
xport1 & 0x80000000
)
ieee = np.empty((len(ieee1),), dtype=">u4,>u4")
ieee["f0"] = ieee1
ieee["f1"] = ieee2
ieee = ieee.view(dtype=">f8")
ieee = ieee.astype("f8")
return ieee
class XportReader(ReaderBase, abc.Iterator):
__doc__ = _xport_reader_doc
def __init__(
self,
filepath_or_buffer: FilePath | ReadBuffer[bytes],
index=None,
encoding: str | None = "ISO-8859-1",
chunksize=None,
):
self._encoding = encoding
self._lines_read = 0
self._index = index
self._chunksize = chunksize
self.handles = get_handle(
filepath_or_buffer, "rb", encoding=encoding, is_text=False
)
self.filepath_or_buffer = self.handles.handle
try:
self._read_header()
except Exception:
self.close()
raise
def close(self):
self.handles.close()
def _get_row(self):
return self.filepath_or_buffer.read(80).decode()
def _read_header(self):
self.filepath_or_buffer.seek(0)
# read file header
line1 = self._get_row()
if line1 != _correct_line1:
if "**COMPRESSED**" in line1:
# this was created with the PROC CPORT method and can't be read
# https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/movefile/p1bm6aqp3fw4uin1hucwh718f6kp.htm
raise ValueError(
"Header record indicates a CPORT file, which is not readable."
)
raise ValueError("Header record is not an XPORT file.")
line2 = self._get_row()
fif = [["prefix", 24], ["version", 8], ["OS", 8], ["_", 24], ["created", 16]]
file_info = _split_line(line2, fif)
if file_info["prefix"] != "SAS SAS SASLIB":
raise ValueError("Header record has invalid prefix.")
file_info["created"] = _parse_date(file_info["created"])
self.file_info = file_info
line3 = self._get_row()
file_info["modified"] = _parse_date(line3[:16])
# read member header
header1 = self._get_row()
header2 = self._get_row()
headflag1 = header1.startswith(_correct_header1)
headflag2 = header2 == _correct_header2
if not (headflag1 and headflag2):
raise ValueError("Member header not found")
# usually 140, could be 135
fieldnamelength = int(header1[-5:-2])
# member info
mem = [
["prefix", 8],
["set_name", 8],
["sasdata", 8],
["version", 8],
["OS", 8],
["_", 24],
["created", 16],
]
member_info = _split_line(self._get_row(), mem)
mem = [["modified", 16], ["_", 16], ["label", 40], ["type", 8]]
member_info.update(_split_line(self._get_row(), mem))
member_info["modified"] = _parse_date(member_info["modified"])
member_info["created"] = _parse_date(member_info["created"])
self.member_info = member_info
# read field names
types = {1: "numeric", 2: "char"}
fieldcount = int(self._get_row()[54:58])
datalength = fieldnamelength * fieldcount
# round up to nearest 80
if datalength % 80:
datalength += 80 - datalength % 80
fielddata = self.filepath_or_buffer.read(datalength)
fields = []
obs_length = 0
while len(fielddata) >= fieldnamelength:
# pull data for one field
fieldbytes, fielddata = (
fielddata[:fieldnamelength],
fielddata[fieldnamelength:],
)
# rest at end gets ignored, so if field is short, pad out
# to match struct pattern below
fieldbytes = fieldbytes.ljust(140)
fieldstruct = struct.unpack(">hhhh8s40s8shhh2s8shhl52s", fieldbytes)
field = dict(zip(_fieldkeys, fieldstruct))
del field["_"]
field["ntype"] = types[field["ntype"]]
fl = field["field_length"]
if field["ntype"] == "numeric" and ((fl < 2) or (fl > 8)):
msg = f"Floating field width {fl} is not between 2 and 8."
raise TypeError(msg)
for k, v in field.items():
try:
field[k] = v.strip()
except AttributeError:
pass
obs_length += field["field_length"]
fields += [field]
header = self._get_row()
if not header == _correct_obs_header:
raise ValueError("Observation header not found.")
self.fields = fields
self.record_length = obs_length
self.record_start = self.filepath_or_buffer.tell()
self.nobs = self._record_count()
self.columns = [x["name"].decode() for x in self.fields]
# Setup the dtype.
dtypel = [
("s" + str(i), "S" + str(field["field_length"]))
for i, field in enumerate(self.fields)
]
dtype = np.dtype(dtypel)
self._dtype = dtype
def __next__(self):
return self.read(nrows=self._chunksize or 1)
def _record_count(self) -> int:
"""
Get number of records in file.
This is maybe suboptimal because we have to seek to the end of
the file.
Side effect: returns file position to record_start.
"""
self.filepath_or_buffer.seek(0, 2)
total_records_length = self.filepath_or_buffer.tell() - self.record_start
if total_records_length % 80 != 0:
warnings.warn("xport file may be corrupted.")
if self.record_length > 80:
self.filepath_or_buffer.seek(self.record_start)
return total_records_length // self.record_length
self.filepath_or_buffer.seek(-80, 2)
last_card_bytes = self.filepath_or_buffer.read(80)
last_card = np.frombuffer(last_card_bytes, dtype=np.uint64)
# 8 byte blank
ix = np.flatnonzero(last_card == 2314885530818453536)
if len(ix) == 0:
tail_pad = 0
else:
tail_pad = 8 * len(ix)
self.filepath_or_buffer.seek(self.record_start)
return (total_records_length - tail_pad) // self.record_length
def get_chunk(self, size=None):
"""
Reads lines from Xport file and returns as dataframe
Parameters
----------
size : int, defaults to None
Number of lines to read. If None, reads whole file.
Returns
-------
DataFrame
"""
if size is None:
size = self._chunksize
return self.read(nrows=size)
def _missing_double(self, vec):
v = vec.view(dtype="u1,u1,u2,u4")
miss = (v["f1"] == 0) & (v["f2"] == 0) & (v["f3"] == 0)
miss1 = (
((v["f0"] >= 0x41) & (v["f0"] <= 0x5A))
| (v["f0"] == 0x5F)
| (v["f0"] == 0x2E)
)
miss &= miss1
return miss
@Appender(_read_method_doc)
def read(self, nrows=None):
if nrows is None:
nrows = self.nobs
read_lines = min(nrows, self.nobs - self._lines_read)
read_len = read_lines * self.record_length
if read_len <= 0:
self.close()
raise StopIteration
raw = self.filepath_or_buffer.read(read_len)
data = np.frombuffer(raw, dtype=self._dtype, count=read_lines)
df = pd.DataFrame(index=range(read_lines))
for j, x in enumerate(self.columns):
vec = data["s" + str(j)]
ntype = self.fields[j]["ntype"]
if ntype == "numeric":
vec = _handle_truncated_float_vec(vec, self.fields[j]["field_length"])
miss = self._missing_double(vec)
v = _parse_float_vec(vec)
v[miss] = np.nan
elif self.fields[j]["ntype"] == "char":
v = [y.rstrip() for y in vec]
if self._encoding is not None:
v = [y.decode(self._encoding) for y in v]
df[x] = v
if self._index is None:
df.index = pd.Index(range(self._lines_read, self._lines_read + read_lines))
else:
df = df.set_index(self._index)
self._lines_read += read_lines
return df