A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/core/common.py

634 lines
17 KiB

"""
Misc tools for implementing data structures
Note: pandas.core.common is *not* part of the public API.
"""
from __future__ import annotations
import builtins
from collections import (
abc,
defaultdict,
)
import contextlib
from functools import partial
import inspect
from typing import (
TYPE_CHECKING,
Any,
Callable,
Collection,
Hashable,
Iterable,
Iterator,
Sequence,
cast,
overload,
)
import warnings
import numpy as np
from pandas._libs import lib
from pandas._typing import (
AnyArrayLike,
ArrayLike,
NpDtype,
RandomState,
Scalar,
T,
)
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
from pandas.core.dtypes.common import (
is_array_like,
is_bool_dtype,
is_extension_array_dtype,
is_integer,
)
from pandas.core.dtypes.generic import (
ABCExtensionArray,
ABCIndex,
ABCSeries,
)
from pandas.core.dtypes.inference import iterable_not_string
from pandas.core.dtypes.missing import isna
if TYPE_CHECKING:
from pandas import Index
class SettingWithCopyError(ValueError):
pass
class SettingWithCopyWarning(Warning):
pass
def flatten(line):
"""
Flatten an arbitrarily nested sequence.
Parameters
----------
line : sequence
The non string sequence to flatten
Notes
-----
This doesn't consider strings sequences.
Returns
-------
flattened : generator
"""
for element in line:
if iterable_not_string(element):
yield from flatten(element)
else:
yield element
def consensus_name_attr(objs):
name = objs[0].name
for obj in objs[1:]:
try:
if obj.name != name:
name = None
except ValueError:
name = None
return name
def is_bool_indexer(key: Any) -> bool:
"""
Check whether `key` is a valid boolean indexer.
Parameters
----------
key : Any
Only list-likes may be considered boolean indexers.
All other types are not considered a boolean indexer.
For array-like input, boolean ndarrays or ExtensionArrays
with ``_is_boolean`` set are considered boolean indexers.
Returns
-------
bool
Whether `key` is a valid boolean indexer.
Raises
------
ValueError
When the array is an object-dtype ndarray or ExtensionArray
and contains missing values.
See Also
--------
check_array_indexer : Check that `key` is a valid array to index,
and convert to an ndarray.
"""
if isinstance(key, (ABCSeries, np.ndarray, ABCIndex)) or (
is_array_like(key) and is_extension_array_dtype(key.dtype)
):
if key.dtype == np.object_:
key = np.asarray(key)
if not lib.is_bool_array(key):
na_msg = "Cannot mask with non-boolean array containing NA / NaN values"
if lib.infer_dtype(key) == "boolean" and isna(key).any():
# Don't raise on e.g. ["A", "B", np.nan], see
# test_loc_getitem_list_of_labels_categoricalindex_with_na
raise ValueError(na_msg)
return False
return True
elif is_bool_dtype(key.dtype):
return True
elif isinstance(key, list):
# check if np.array(key).dtype would be bool
if len(key) > 0:
if type(key) is not list:
# GH#42461 cython will raise TypeError if we pass a subclass
key = list(key)
return lib.is_bool_list(key)
return False
def cast_scalar_indexer(val, warn_float: bool = False):
"""
To avoid numpy DeprecationWarnings, cast float to integer where valid.
Parameters
----------
val : scalar
warn_float : bool, default False
If True, issue deprecation warning for a float indexer.
Returns
-------
outval : scalar
"""
# assumes lib.is_scalar(val)
if lib.is_float(val) and val.is_integer():
if warn_float:
warnings.warn(
"Indexing with a float is deprecated, and will raise an IndexError "
"in pandas 2.0. You can manually convert to an integer key instead.",
FutureWarning,
stacklevel=find_stack_level(),
)
return int(val)
return val
def not_none(*args):
"""
Returns a generator consisting of the arguments that are not None.
"""
return (arg for arg in args if arg is not None)
def any_none(*args) -> bool:
"""
Returns a boolean indicating if any argument is None.
"""
return any(arg is None for arg in args)
def all_none(*args) -> bool:
"""
Returns a boolean indicating if all arguments are None.
"""
return all(arg is None for arg in args)
def any_not_none(*args) -> bool:
"""
Returns a boolean indicating if any argument is not None.
"""
return any(arg is not None for arg in args)
def all_not_none(*args) -> bool:
"""
Returns a boolean indicating if all arguments are not None.
"""
return all(arg is not None for arg in args)
def count_not_none(*args) -> int:
"""
Returns the count of arguments that are not None.
"""
return sum(x is not None for x in args)
def asarray_tuplesafe(values, dtype: NpDtype | None = None) -> np.ndarray:
if not (isinstance(values, (list, tuple)) or hasattr(values, "__array__")):
values = list(values)
elif isinstance(values, ABCIndex):
# error: Incompatible return value type (got "Union[ExtensionArray, ndarray]",
# expected "ndarray")
return values._values # type: ignore[return-value]
if isinstance(values, list) and dtype in [np.object_, object]:
return construct_1d_object_array_from_listlike(values)
result = np.asarray(values, dtype=dtype)
if issubclass(result.dtype.type, str):
result = np.asarray(values, dtype=object)
if result.ndim == 2:
# Avoid building an array of arrays:
values = [tuple(x) for x in values]
result = construct_1d_object_array_from_listlike(values)
return result
def index_labels_to_array(labels, dtype: NpDtype | None = None) -> np.ndarray:
"""
Transform label or iterable of labels to array, for use in Index.
Parameters
----------
dtype : dtype
If specified, use as dtype of the resulting array, otherwise infer.
Returns
-------
array
"""
if isinstance(labels, (str, tuple)):
labels = [labels]
if not isinstance(labels, (list, np.ndarray)):
try:
labels = list(labels)
except TypeError: # non-iterable
labels = [labels]
labels = asarray_tuplesafe(labels, dtype=dtype)
return labels
def maybe_make_list(obj):
if obj is not None and not isinstance(obj, (tuple, list)):
return [obj]
return obj
def maybe_iterable_to_list(obj: Iterable[T] | T) -> Collection[T] | T:
"""
If obj is Iterable but not list-like, consume into list.
"""
if isinstance(obj, abc.Iterable) and not isinstance(obj, abc.Sized):
return list(obj)
obj = cast(Collection, obj)
return obj
def is_null_slice(obj) -> bool:
"""
We have a null slice.
"""
return (
isinstance(obj, slice)
and obj.start is None
and obj.stop is None
and obj.step is None
)
def is_true_slices(line) -> list[bool]:
"""
Find non-trivial slices in "line": return a list of booleans with same length.
"""
return [isinstance(k, slice) and not is_null_slice(k) for k in line]
# TODO: used only once in indexing; belongs elsewhere?
def is_full_slice(obj, line: int) -> bool:
"""
We have a full length slice.
"""
return (
isinstance(obj, slice)
and obj.start == 0
and obj.stop == line
and obj.step is None
)
def get_callable_name(obj):
# typical case has name
if hasattr(obj, "__name__"):
return getattr(obj, "__name__")
# some objects don't; could recurse
if isinstance(obj, partial):
return get_callable_name(obj.func)
# fall back to class name
if callable(obj):
return type(obj).__name__
# everything failed (probably because the argument
# wasn't actually callable); we return None
# instead of the empty string in this case to allow
# distinguishing between no name and a name of ''
return None
def apply_if_callable(maybe_callable, obj, **kwargs):
"""
Evaluate possibly callable input using obj and kwargs if it is callable,
otherwise return as it is.
Parameters
----------
maybe_callable : possibly a callable
obj : NDFrame
**kwargs
"""
if callable(maybe_callable):
return maybe_callable(obj, **kwargs)
return maybe_callable
def standardize_mapping(into):
"""
Helper function to standardize a supplied mapping.
Parameters
----------
into : instance or subclass of collections.abc.Mapping
Must be a class, an initialized collections.defaultdict,
or an instance of a collections.abc.Mapping subclass.
Returns
-------
mapping : a collections.abc.Mapping subclass or other constructor
a callable object that can accept an iterator to create
the desired Mapping.
See Also
--------
DataFrame.to_dict
Series.to_dict
"""
if not inspect.isclass(into):
if isinstance(into, defaultdict):
return partial(defaultdict, into.default_factory)
into = type(into)
if not issubclass(into, abc.Mapping):
raise TypeError(f"unsupported type: {into}")
elif into == defaultdict:
raise TypeError("to_dict() only accepts initialized defaultdicts")
return into
@overload
def random_state(state: np.random.Generator) -> np.random.Generator:
...
@overload
def random_state(
state: int | ArrayLike | np.random.BitGenerator | np.random.RandomState | None,
) -> np.random.RandomState:
...
def random_state(state: RandomState | None = None):
"""
Helper function for processing random_state arguments.
Parameters
----------
state : int, array-like, BitGenerator, Generator, np.random.RandomState, None.
If receives an int, array-like, or BitGenerator, passes to
np.random.RandomState() as seed.
If receives an np.random RandomState or Generator, just returns that unchanged.
If receives `None`, returns np.random.
If receives anything else, raises an informative ValueError.
.. versionchanged:: 1.1.0
array-like and BitGenerator object now passed to np.random.RandomState()
as seed
Default None.
Returns
-------
np.random.RandomState or np.random.Generator. If state is None, returns np.random
"""
if (
is_integer(state)
or is_array_like(state)
or isinstance(state, np.random.BitGenerator)
):
# error: Argument 1 to "RandomState" has incompatible type "Optional[Union[int,
# Union[ExtensionArray, ndarray[Any, Any]], Generator, RandomState]]"; expected
# "Union[None, Union[Union[_SupportsArray[dtype[Union[bool_, integer[Any]]]],
# Sequence[_SupportsArray[dtype[Union[bool_, integer[Any]]]]],
# Sequence[Sequence[_SupportsArray[dtype[Union[bool_, integer[Any]]]]]],
# Sequence[Sequence[Sequence[_SupportsArray[dtype[Union[bool_,
# integer[Any]]]]]]],
# Sequence[Sequence[Sequence[Sequence[_SupportsArray[dtype[Union[bool_,
# integer[Any]]]]]]]]], Union[bool, int, Sequence[Union[bool, int]],
# Sequence[Sequence[Union[bool, int]]], Sequence[Sequence[Sequence[Union[bool,
# int]]]], Sequence[Sequence[Sequence[Sequence[Union[bool, int]]]]]]],
# BitGenerator]"
return np.random.RandomState(state) # type: ignore[arg-type]
elif isinstance(state, np.random.RandomState):
return state
elif isinstance(state, np.random.Generator):
return state
elif state is None:
return np.random
else:
raise ValueError(
"random_state must be an integer, array-like, a BitGenerator, Generator, "
"a numpy RandomState, or None"
)
def pipe(
obj, func: Callable[..., T] | tuple[Callable[..., T], str], *args, **kwargs
) -> T:
"""
Apply a function ``func`` to object ``obj`` either by passing obj as the
first argument to the function or, in the case that the func is a tuple,
interpret the first element of the tuple as a function and pass the obj to
that function as a keyword argument whose key is the value of the second
element of the tuple.
Parameters
----------
func : callable or tuple of (callable, str)
Function to apply to this object or, alternatively, a
``(callable, data_keyword)`` tuple where ``data_keyword`` is a
string indicating the keyword of `callable`` that expects the
object.
*args : iterable, optional
Positional arguments passed into ``func``.
**kwargs : dict, optional
A dictionary of keyword arguments passed into ``func``.
Returns
-------
object : the return type of ``func``.
"""
if isinstance(func, tuple):
func, target = func
if target in kwargs:
msg = f"{target} is both the pipe target and a keyword argument"
raise ValueError(msg)
kwargs[target] = obj
return func(*args, **kwargs)
else:
return func(obj, *args, **kwargs)
def get_rename_function(mapper):
"""
Returns a function that will map names/labels, dependent if mapper
is a dict, Series or just a function.
"""
if isinstance(mapper, (abc.Mapping, ABCSeries)):
def f(x):
if x in mapper:
return mapper[x]
else:
return x
else:
f = mapper
return f
def convert_to_list_like(
values: Scalar | Iterable | AnyArrayLike,
) -> list | AnyArrayLike:
"""
Convert list-like or scalar input to list-like. List, numpy and pandas array-like
inputs are returned unmodified whereas others are converted to list.
"""
if isinstance(values, (list, np.ndarray, ABCIndex, ABCSeries, ABCExtensionArray)):
return values
elif isinstance(values, abc.Iterable) and not isinstance(values, str):
return list(values)
return [values]
@contextlib.contextmanager
def temp_setattr(obj, attr: str, value) -> Iterator[None]:
"""Temporarily set attribute on an object.
Args:
obj: Object whose attribute will be modified.
attr: Attribute to modify.
value: Value to temporarily set attribute to.
Yields:
obj with modified attribute.
"""
old_value = getattr(obj, attr)
setattr(obj, attr, value)
yield obj
setattr(obj, attr, old_value)
def require_length_match(data, index: Index):
"""
Check the length of data matches the length of the index.
"""
if len(data) != len(index):
raise ValueError(
"Length of values "
f"({len(data)}) "
"does not match length of index "
f"({len(index)})"
)
# the ufuncs np.maximum.reduce and np.minimum.reduce default to axis=0,
# whereas np.min and np.max (which directly call obj.min and obj.max)
# default to axis=None.
_builtin_table = {
builtins.sum: np.sum,
builtins.max: np.maximum.reduce,
builtins.min: np.minimum.reduce,
}
_cython_table = {
builtins.sum: "sum",
builtins.max: "max",
builtins.min: "min",
np.all: "all",
np.any: "any",
np.sum: "sum",
np.nansum: "sum",
np.mean: "mean",
np.nanmean: "mean",
np.prod: "prod",
np.nanprod: "prod",
np.std: "std",
np.nanstd: "std",
np.var: "var",
np.nanvar: "var",
np.median: "median",
np.nanmedian: "median",
np.max: "max",
np.nanmax: "max",
np.min: "min",
np.nanmin: "min",
np.cumprod: "cumprod",
np.nancumprod: "cumprod",
np.cumsum: "cumsum",
np.nancumsum: "cumsum",
}
def get_cython_func(arg: Callable) -> str | None:
"""
if we define an internal function for this argument, return it
"""
return _cython_table.get(arg)
def is_builtin_func(arg):
"""
if we define an builtin function for this argument, return it,
otherwise return the arg
"""
return _builtin_table.get(arg, arg)
def fill_missing_names(names: Sequence[Hashable | None]) -> list[Hashable]:
"""
If a name is missing then replace it by level_n, where n is the count
.. versionadded:: 1.4.0
Parameters
----------
names : list-like
list of column names or None values.
Returns
-------
list
list of column names with the None values replaced.
"""
return [f"level_{i}" if name is None else name for i, name in enumerate(names)]