A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/_libs/writers.pyi

23 lines
580 B

from __future__ import annotations
import numpy as np
from pandas._typing import ArrayLike
def write_csv_rows(
data: list[ArrayLike],
data_index: np.ndarray,
nlevels: int,
cols: np.ndarray,
writer: object, # _csv.writer
) -> None: ...
def convert_json_to_lines(arr: str) -> str: ...
def max_len_string_array(
arr: np.ndarray, # pandas_string[:]
) -> int: ...
def word_len(val: object) -> int: ...
def string_array_replace_from_nan_rep(
arr: np.ndarray, # np.ndarray[object, ndim=1]
nan_rep: object,
replace: object = ...,
) -> None: ...