A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/_libs/window/aggregations.pyi

127 lines
3.9 KiB

from typing import (
Any,
Callable,
Literal,
)
import numpy as np
from pandas._typing import (
WindowingRankType,
npt,
)
def roll_sum(
values: np.ndarray, # const float64_t[:]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_mean(
values: np.ndarray, # const float64_t[:]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_var(
values: np.ndarray, # const float64_t[:]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
ddof: int = ...,
) -> np.ndarray: ... # np.ndarray[float]
def roll_skew(
values: np.ndarray, # np.ndarray[np.float64]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_kurt(
values: np.ndarray, # np.ndarray[np.float64]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_median_c(
values: np.ndarray, # np.ndarray[np.float64]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_max(
values: np.ndarray, # np.ndarray[np.float64]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_min(
values: np.ndarray, # np.ndarray[np.float64]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
) -> np.ndarray: ... # np.ndarray[float]
def roll_quantile(
values: np.ndarray, # const float64_t[:]
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
quantile: float, # float64_t
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
) -> np.ndarray: ... # np.ndarray[float]
def roll_rank(
values: np.ndarray,
start: np.ndarray,
end: np.ndarray,
minp: int,
percentile: bool,
method: WindowingRankType,
ascending: bool,
) -> np.ndarray: ... # np.ndarray[float]
def roll_apply(
obj: object,
start: np.ndarray, # np.ndarray[np.int64]
end: np.ndarray, # np.ndarray[np.int64]
minp: int, # int64_t
function: Callable[..., Any],
raw: bool,
args: tuple[Any, ...],
kwargs: dict[str, Any],
) -> npt.NDArray[np.float64]: ...
def roll_weighted_sum(
values: np.ndarray, # const float64_t[:]
weights: np.ndarray, # const float64_t[:]
minp: int,
) -> np.ndarray: ... # np.ndarray[np.float64]
def roll_weighted_mean(
values: np.ndarray, # const float64_t[:]
weights: np.ndarray, # const float64_t[:]
minp: int,
) -> np.ndarray: ... # np.ndarray[np.float64]
def roll_weighted_var(
values: np.ndarray, # const float64_t[:]
weights: np.ndarray, # const float64_t[:]
minp: int, # int64_t
ddof: int, # unsigned int
) -> np.ndarray: ... # np.ndarray[np.float64]
def ewm(
vals: np.ndarray, # const float64_t[:]
start: np.ndarray, # const int64_t[:]
end: np.ndarray, # const int64_t[:]
minp: int,
com: float, # float64_t
adjust: bool,
ignore_na: bool,
deltas: np.ndarray, # const float64_t[:]
normalize: bool,
) -> np.ndarray: ... # np.ndarray[np.float64]
def ewmcov(
input_x: np.ndarray, # const float64_t[:]
start: np.ndarray, # const int64_t[:]
end: np.ndarray, # const int64_t[:]
minp: int,
input_y: np.ndarray, # const float64_t[:]
com: float, # float64_t
adjust: bool,
ignore_na: bool,
bias: bool,
) -> np.ndarray: ... # np.ndarray[np.float64]