A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/_libs/tslibs/parsing.pyi

62 lines
1.9 KiB

from datetime import datetime
import numpy as np
from pandas._libs.tslibs.offsets import BaseOffset
from pandas._typing import npt
class DateParseError(ValueError): ...
def parse_datetime_string(
date_string: str,
dayfirst: bool = ...,
yearfirst: bool = ...,
**kwargs,
) -> datetime: ...
def parse_time_string(
arg: str,
freq: BaseOffset | str | None = ...,
dayfirst: bool | None = ...,
yearfirst: bool | None = ...,
) -> tuple[datetime, str]: ...
def _does_string_look_like_datetime(py_string: str) -> bool: ...
def quarter_to_myear(year: int, quarter: int, freq: str) -> tuple[int, int]: ...
def try_parse_dates(
values: npt.NDArray[np.object_], # object[:]
parser=...,
dayfirst: bool = ...,
default: datetime | None = ...,
) -> npt.NDArray[np.object_]: ...
def try_parse_date_and_time(
dates: npt.NDArray[np.object_], # object[:]
times: npt.NDArray[np.object_], # object[:]
date_parser=...,
time_parser=...,
dayfirst: bool = ...,
default: datetime | None = ...,
) -> npt.NDArray[np.object_]: ...
def try_parse_year_month_day(
years: npt.NDArray[np.object_], # object[:]
months: npt.NDArray[np.object_], # object[:]
days: npt.NDArray[np.object_], # object[:]
) -> npt.NDArray[np.object_]: ...
def try_parse_datetime_components(
years: npt.NDArray[np.object_], # object[:]
months: npt.NDArray[np.object_], # object[:]
days: npt.NDArray[np.object_], # object[:]
hours: npt.NDArray[np.object_], # object[:]
minutes: npt.NDArray[np.object_], # object[:]
seconds: npt.NDArray[np.object_], # object[:]
) -> npt.NDArray[np.object_]: ...
def format_is_iso(f: str) -> bool: ...
def guess_datetime_format(
dt_str,
dayfirst: bool = ...,
dt_str_parse=...,
dt_str_split=...,
) -> str | None: ...
def concat_date_cols(
date_cols: tuple,
keep_trivial_numbers: bool = ...,
) -> npt.NDArray[np.object_]: ...
def get_rule_month(source: str) -> str: ...