A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/_libs/missing.pyx

507 lines
14 KiB

from decimal import Decimal
import numbers
from sys import maxsize
import cython
from cython import Py_ssize_t
import numpy as np
cimport numpy as cnp
from numpy cimport (
float64_t,
int64_t,
ndarray,
uint8_t,
)
cnp.import_array()
from pandas._libs cimport util
from pandas._libs.tslibs.nattype cimport (
c_NaT as NaT,
checknull_with_nat,
is_dt64nat,
is_td64nat,
)
from pandas._libs.tslibs.np_datetime cimport (
get_datetime64_unit,
get_datetime64_value,
get_timedelta64_value,
)
from pandas._libs.ops_dispatch import maybe_dispatch_ufunc_to_dunder_op
cdef:
float64_t INF = <float64_t>np.inf
float64_t NEGINF = -INF
int64_t NPY_NAT = util.get_nat()
bint is_32bit = maxsize <= 2 ** 32
type cDecimal = Decimal # for faster isinstance checks
cpdef bint is_matching_na(object left, object right, bint nan_matches_none=False):
"""
Check if two scalars are both NA of matching types.
Parameters
----------
left : Any
right : Any
nan_matches_none : bool, default False
For backwards compatibility, consider NaN as matching None.
Returns
-------
bool
"""
if left is None:
if nan_matches_none and util.is_nan(right):
return True
return right is None
elif left is C_NA:
return right is C_NA
elif left is NaT:
return right is NaT
elif util.is_float_object(left):
if nan_matches_none and right is None and util.is_nan(left):
return True
return (
util.is_nan(left)
and util.is_float_object(right)
and util.is_nan(right)
)
elif util.is_complex_object(left):
return (
util.is_nan(left)
and util.is_complex_object(right)
and util.is_nan(right)
)
elif util.is_datetime64_object(left):
return (
get_datetime64_value(left) == NPY_NAT
and util.is_datetime64_object(right)
and get_datetime64_value(right) == NPY_NAT
and get_datetime64_unit(left) == get_datetime64_unit(right)
)
elif util.is_timedelta64_object(left):
return (
get_timedelta64_value(left) == NPY_NAT
and util.is_timedelta64_object(right)
and get_timedelta64_value(right) == NPY_NAT
and get_datetime64_unit(left) == get_datetime64_unit(right)
)
elif is_decimal_na(left):
return is_decimal_na(right)
return False
cpdef bint checknull(object val, bint inf_as_na=False):
"""
Return boolean describing of the input is NA-like, defined here as any
of:
- None
- nan
- NaT
- np.datetime64 representation of NaT
- np.timedelta64 representation of NaT
- NA
- Decimal("NaN")
Parameters
----------
val : object
inf_as_na : bool, default False
Whether to treat INF and -INF as NA values.
Returns
-------
bool
"""
if val is None or val is NaT or val is C_NA:
return True
elif util.is_float_object(val) or util.is_complex_object(val):
if val != val:
return True
elif inf_as_na:
return val == INF or val == NEGINF
return False
elif util.is_timedelta64_object(val):
return get_timedelta64_value(val) == NPY_NAT
elif util.is_datetime64_object(val):
return get_datetime64_value(val) == NPY_NAT
else:
return is_decimal_na(val)
cdef inline bint is_decimal_na(object val):
"""
Is this a decimal.Decimal object Decimal("NAN").
"""
return isinstance(val, cDecimal) and val != val
@cython.wraparound(False)
@cython.boundscheck(False)
cpdef ndarray[uint8_t] isnaobj(ndarray arr, bint inf_as_na=False):
"""
Return boolean mask denoting which elements of a 1-D array are na-like,
according to the criteria defined in `checknull`:
- None
- nan
- NaT
- np.datetime64 representation of NaT
- np.timedelta64 representation of NaT
- NA
- Decimal("NaN")
Parameters
----------
arr : ndarray
Returns
-------
result : ndarray (dtype=np.bool_)
"""
cdef:
Py_ssize_t i, n
object val
ndarray[uint8_t] result
assert arr.ndim == 1, "'arr' must be 1-D."
n = len(arr)
result = np.empty(n, dtype=np.uint8)
for i in range(n):
val = arr[i]
result[i] = checknull(val, inf_as_na=inf_as_na)
return result.view(np.bool_)
@cython.wraparound(False)
@cython.boundscheck(False)
def isnaobj2d(arr: ndarray, inf_as_na: bool = False) -> ndarray:
"""
Return boolean mask denoting which elements of a 2-D array are na-like,
according to the criteria defined in `checknull`:
- None
- nan
- NaT
- np.datetime64 representation of NaT
- np.timedelta64 representation of NaT
- NA
- Decimal("NaN")
Parameters
----------
arr : ndarray
Returns
-------
result : ndarray (dtype=np.bool_)
"""
cdef:
Py_ssize_t i, j, n, m
object val
ndarray[uint8_t, ndim=2] result
assert arr.ndim == 2, "'arr' must be 2-D."
n, m = (<object>arr).shape
result = np.zeros((n, m), dtype=np.uint8)
for i in range(n):
for j in range(m):
val = arr[i, j]
if checknull(val, inf_as_na=inf_as_na):
result[i, j] = 1
return result.view(np.bool_)
def isposinf_scalar(val: object) -> bool:
return util.is_float_object(val) and val == INF
def isneginf_scalar(val: object) -> bool:
return util.is_float_object(val) and val == NEGINF
cdef inline bint is_null_datetime64(v):
# determine if we have a null for a datetime (or integer versions),
# excluding np.timedelta64('nat')
if checknull_with_nat(v) or is_dt64nat(v):
return True
return False
cdef inline bint is_null_timedelta64(v):
# determine if we have a null for a timedelta (or integer versions),
# excluding np.datetime64('nat')
if checknull_with_nat(v) or is_td64nat(v):
return True
return False
cdef bint checknull_with_nat_and_na(object obj):
# See GH#32214
return checknull_with_nat(obj) or obj is C_NA
@cython.wraparound(False)
@cython.boundscheck(False)
def is_float_nan(values: ndarray) -> ndarray:
"""
True for elements which correspond to a float nan
Returns
-------
ndarray[bool]
"""
cdef:
ndarray[uint8_t] result
Py_ssize_t i, N
object val
N = len(values)
result = np.zeros(N, dtype=np.uint8)
for i in range(N):
val = values[i]
if util.is_nan(val):
result[i] = True
return result.view(bool)
@cython.wraparound(False)
@cython.boundscheck(False)
def is_numeric_na(values: ndarray) -> ndarray:
"""
Check for NA values consistent with IntegerArray/FloatingArray.
Similar to a vectorized is_valid_na_for_dtype restricted to numeric dtypes.
Returns
-------
ndarray[bool]
"""
cdef:
ndarray[uint8_t] result
Py_ssize_t i, N
object val
N = len(values)
result = np.zeros(N, dtype=np.uint8)
for i in range(N):
val = values[i]
if checknull(val):
if val is None or val is C_NA or util.is_nan(val) or is_decimal_na(val):
result[i] = True
else:
raise TypeError(f"'values' contains non-numeric NA {val}")
return result.view(bool)
# -----------------------------------------------------------------------------
# Implementation of NA singleton
def _create_binary_propagating_op(name, is_divmod=False):
def method(self, other):
if (other is C_NA or isinstance(other, str)
or isinstance(other, (numbers.Number, np.bool_))
or isinstance(other, np.ndarray) and not other.shape):
# Need the other.shape clause to handle NumPy scalars,
# since we do a setitem on `out` below, which
# won't work for NumPy scalars.
if is_divmod:
return NA, NA
else:
return NA
elif isinstance(other, np.ndarray):
out = np.empty(other.shape, dtype=object)
out[:] = NA
if is_divmod:
return out, out.copy()
else:
return out
return NotImplemented
method.__name__ = name
return method
def _create_unary_propagating_op(name: str):
def method(self):
return NA
method.__name__ = name
return method
cdef class C_NAType:
pass
class NAType(C_NAType):
"""
NA ("not available") missing value indicator.
.. warning::
Experimental: the behaviour of NA can still change without warning.
.. versionadded:: 1.0.0
The NA singleton is a missing value indicator defined by pandas. It is
used in certain new extension dtypes (currently the "string" dtype).
"""
_instance = None
def __new__(cls, *args, **kwargs):
if NAType._instance is None:
NAType._instance = C_NAType.__new__(cls, *args, **kwargs)
return NAType._instance
def __repr__(self) -> str:
return "<NA>"
def __format__(self, format_spec) -> str:
try:
return self.__repr__().__format__(format_spec)
except ValueError:
return self.__repr__()
def __bool__(self):
raise TypeError("boolean value of NA is ambiguous")
def __hash__(self):
# GH 30013: Ensure hash is large enough to avoid hash collisions with integers
exponent = 31 if is_32bit else 61
return 2 ** exponent - 1
def __reduce__(self):
return "NA"
# Binary arithmetic and comparison ops -> propagate
__add__ = _create_binary_propagating_op("__add__")
__radd__ = _create_binary_propagating_op("__radd__")
__sub__ = _create_binary_propagating_op("__sub__")
__rsub__ = _create_binary_propagating_op("__rsub__")
__mul__ = _create_binary_propagating_op("__mul__")
__rmul__ = _create_binary_propagating_op("__rmul__")
__matmul__ = _create_binary_propagating_op("__matmul__")
__rmatmul__ = _create_binary_propagating_op("__rmatmul__")
__truediv__ = _create_binary_propagating_op("__truediv__")
__rtruediv__ = _create_binary_propagating_op("__rtruediv__")
__floordiv__ = _create_binary_propagating_op("__floordiv__")
__rfloordiv__ = _create_binary_propagating_op("__rfloordiv__")
__mod__ = _create_binary_propagating_op("__mod__")
__rmod__ = _create_binary_propagating_op("__rmod__")
__divmod__ = _create_binary_propagating_op("__divmod__", is_divmod=True)
__rdivmod__ = _create_binary_propagating_op("__rdivmod__", is_divmod=True)
# __lshift__ and __rshift__ are not implemented
__eq__ = _create_binary_propagating_op("__eq__")
__ne__ = _create_binary_propagating_op("__ne__")
__le__ = _create_binary_propagating_op("__le__")
__lt__ = _create_binary_propagating_op("__lt__")
__gt__ = _create_binary_propagating_op("__gt__")
__ge__ = _create_binary_propagating_op("__ge__")
# Unary ops
__neg__ = _create_unary_propagating_op("__neg__")
__pos__ = _create_unary_propagating_op("__pos__")
__abs__ = _create_unary_propagating_op("__abs__")
__invert__ = _create_unary_propagating_op("__invert__")
# pow has special
def __pow__(self, other):
if other is C_NA:
return NA
elif isinstance(other, (numbers.Number, np.bool_)):
if other == 0:
# returning positive is correct for +/- 0.
return type(other)(1)
else:
return NA
elif isinstance(other, np.ndarray):
return np.where(other == 0, other.dtype.type(1), NA)
return NotImplemented
def __rpow__(self, other):
if other is C_NA:
return NA
elif isinstance(other, (numbers.Number, np.bool_)):
if other == 1:
return other
else:
return NA
elif isinstance(other, np.ndarray):
return np.where(other == 1, other, NA)
return NotImplemented
# Logical ops using Kleene logic
def __and__(self, other):
if other is False:
return False
elif other is True or other is C_NA:
return NA
return NotImplemented
__rand__ = __and__
def __or__(self, other):
if other is True:
return True
elif other is False or other is C_NA:
return NA
return NotImplemented
__ror__ = __or__
def __xor__(self, other):
if other is False or other is True or other is C_NA:
return NA
return NotImplemented
__rxor__ = __xor__
__array_priority__ = 1000
_HANDLED_TYPES = (np.ndarray, numbers.Number, str, np.bool_)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
types = self._HANDLED_TYPES + (NAType,)
for x in inputs:
if not isinstance(x, types):
return NotImplemented
if method != "__call__":
raise ValueError(f"ufunc method '{method}' not supported for NA")
result = maybe_dispatch_ufunc_to_dunder_op(
self, ufunc, method, *inputs, **kwargs
)
if result is NotImplemented:
# For a NumPy ufunc that's not a binop, like np.logaddexp
index = [i for i, x in enumerate(inputs) if x is NA][0]
result = np.broadcast_arrays(*inputs)[index]
if result.ndim == 0:
result = result.item()
if ufunc.nout > 1:
result = (NA,) * ufunc.nout
return result
C_NA = NAType() # C-visible
NA = C_NA # Python-visible