A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/_libs/index.pyi

65 lines
2.2 KiB

import numpy as np
from pandas._typing import npt
from pandas import MultiIndex
class IndexEngine:
over_size_threshold: bool
def __init__(self, values: np.ndarray): ...
def __contains__(self, val: object) -> bool: ...
# -> int | slice | np.ndarray[bool]
def get_loc(self, val: object) -> int | slice | np.ndarray: ...
def sizeof(self, deep: bool = ...) -> int: ...
def __sizeof__(self) -> int: ...
@property
def is_unique(self) -> bool: ...
@property
def is_monotonic_increasing(self) -> bool: ...
@property
def is_monotonic_decreasing(self) -> bool: ...
@property
def is_mapping_populated(self) -> bool: ...
def clear_mapping(self): ...
def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
def get_indexer_non_unique(
self,
targets: np.ndarray,
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
class Float64Engine(IndexEngine): ...
class Float32Engine(IndexEngine): ...
class Int64Engine(IndexEngine): ...
class Int32Engine(IndexEngine): ...
class Int16Engine(IndexEngine): ...
class Int8Engine(IndexEngine): ...
class UInt64Engine(IndexEngine): ...
class UInt32Engine(IndexEngine): ...
class UInt16Engine(IndexEngine): ...
class UInt8Engine(IndexEngine): ...
class ObjectEngine(IndexEngine): ...
class DatetimeEngine(Int64Engine): ...
class TimedeltaEngine(DatetimeEngine): ...
class PeriodEngine(Int64Engine): ...
class BaseMultiIndexCodesEngine:
levels: list[np.ndarray]
offsets: np.ndarray # ndarray[uint64_t, ndim=1]
def __init__(
self,
levels: list[np.ndarray], # all entries hashable
labels: list[np.ndarray], # all entries integer-dtyped
offsets: np.ndarray, # np.ndarray[np.uint64, ndim=1]
): ...
def get_indexer(
self,
target: npt.NDArray[np.object_],
) -> npt.NDArray[np.intp]: ...
def _extract_level_codes(self, target: MultiIndex) -> np.ndarray: ...
def get_indexer_with_fill(
self,
target: np.ndarray, # np.ndarray[object] of tuples
values: np.ndarray, # np.ndarray[object] of tuples
method: str,
limit: int | None,
) -> npt.NDArray[np.intp]: ...