A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/_libs/hashtable.pyi

213 lines
6.3 KiB

from typing import (
Hashable,
Literal,
)
import numpy as np
from pandas._typing import npt
def unique_label_indices(
labels: np.ndarray, # const int64_t[:]
) -> np.ndarray: ...
class Factorizer:
count: int
def __init__(self, size_hint: int): ...
def get_count(self) -> int: ...
class ObjectFactorizer(Factorizer):
table: PyObjectHashTable
uniques: ObjectVector
def factorize(
self,
values: npt.NDArray[np.object_],
sort: bool = ...,
na_sentinel=...,
na_value=...,
) -> npt.NDArray[np.intp]: ...
class Int64Factorizer(Factorizer):
table: Int64HashTable
uniques: Int64Vector
def factorize(
self,
values: np.ndarray, # const int64_t[:]
sort: bool = ...,
na_sentinel=...,
na_value=...,
) -> npt.NDArray[np.intp]: ...
class Int64Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.int64]: ...
class Int32Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.int32]: ...
class Int16Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.int16]: ...
class Int8Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.int8]: ...
class UInt64Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.uint64]: ...
class UInt32Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.uint32]: ...
class UInt16Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.uint16]: ...
class UInt8Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.uint8]: ...
class Float64Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.float64]: ...
class Float32Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.float32]: ...
class Complex128Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.complex128]: ...
class Complex64Vector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.complex64]: ...
class StringVector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.object_]: ...
class ObjectVector:
def __init__(self): ...
def __len__(self) -> int: ...
def to_array(self) -> npt.NDArray[np.object_]: ...
class HashTable:
# NB: The base HashTable class does _not_ actually have these methods;
# we are putting the here for the sake of mypy to avoid
# reproducing them in each subclass below.
def __init__(self, size_hint: int = ...): ...
def __len__(self) -> int: ...
def __contains__(self, key: Hashable) -> bool: ...
def sizeof(self, deep: bool = ...) -> int: ...
def get_state(self) -> dict[str, int]: ...
# TODO: `item` type is subclass-specific
def get_item(self, item): ... # TODO: return type?
def set_item(self, item) -> None: ...
# FIXME: we don't actually have this for StringHashTable or ObjectHashTable?
def map(
self,
keys: np.ndarray, # np.ndarray[subclass-specific]
values: np.ndarray, # const int64_t[:]
) -> None: ...
def map_locations(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
) -> None: ...
def lookup(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
) -> npt.NDArray[np.intp]: ...
def get_labels(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
uniques, # SubclassTypeVector
count_prior: int = ...,
na_sentinel: int = ...,
na_value: object = ...,
) -> npt.NDArray[np.intp]: ...
def unique(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
return_inverse: bool = ...,
) -> tuple[
np.ndarray, # np.ndarray[subclass-specific]
npt.NDArray[np.intp],
] | np.ndarray: ... # np.ndarray[subclass-specific]
def _unique(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
uniques, # FooVector
count_prior: int = ...,
na_sentinel: int = ...,
na_value: object = ...,
ignore_na: bool = ...,
return_inverse: bool = ...,
) -> tuple[
np.ndarray, # np.ndarray[subclass-specific]
npt.NDArray[np.intp],
] | np.ndarray: ... # np.ndarray[subclass-specific]
def factorize(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
na_sentinel: int = ...,
na_value: object = ...,
mask=...,
) -> tuple[np.ndarray, npt.NDArray[np.intp],]: ... # np.ndarray[subclass-specific]
class Complex128HashTable(HashTable): ...
class Complex64HashTable(HashTable): ...
class Float64HashTable(HashTable): ...
class Float32HashTable(HashTable): ...
class Int64HashTable(HashTable):
# Only Int64HashTable has get_labels_groupby
def get_labels_groupby(
self,
values: np.ndarray, # const int64_t[:]
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64],]: ...
class Int32HashTable(HashTable): ...
class Int16HashTable(HashTable): ...
class Int8HashTable(HashTable): ...
class UInt64HashTable(HashTable): ...
class UInt32HashTable(HashTable): ...
class UInt16HashTable(HashTable): ...
class UInt8HashTable(HashTable): ...
class StringHashTable(HashTable): ...
class PyObjectHashTable(HashTable): ...
class IntpHashTable(HashTable): ...
def duplicated(
values: np.ndarray,
keep: Literal["last", "first", False] = ...,
) -> npt.NDArray[np.bool_]: ...
def mode(values: np.ndarray, dropna: bool) -> np.ndarray: ...
def value_count(
values: np.ndarray,
dropna: bool,
) -> tuple[np.ndarray, npt.NDArray[np.int64],]: ... # np.ndarray[same-as-values]
# arr and values should have same dtype
def ismember(
arr: np.ndarray,
values: np.ndarray,
) -> npt.NDArray[np.bool_]: ...
def object_hash(obj) -> int: ...
def objects_are_equal(a, b) -> bool: ...