A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/_libs/groupby.pyi

159 lines
5.1 KiB

from typing import Literal
import numpy as np
from pandas._typing import npt
def group_median_float64(
out: np.ndarray, # ndarray[float64_t, ndim=2]
counts: npt.NDArray[np.int64],
values: np.ndarray, # ndarray[float64_t, ndim=2]
labels: npt.NDArray[np.int64],
min_count: int = ..., # Py_ssize_t
) -> None: ...
def group_cumprod_float64(
out: np.ndarray, # float64_t[:, ::1]
values: np.ndarray, # const float64_t[:, :]
labels: np.ndarray, # const int64_t[:]
ngroups: int,
is_datetimelike: bool,
skipna: bool = ...,
) -> None: ...
def group_cumsum(
out: np.ndarray, # numeric[:, ::1]
values: np.ndarray, # ndarray[numeric, ndim=2]
labels: np.ndarray, # const int64_t[:]
ngroups: int,
is_datetimelike: bool,
skipna: bool = ...,
) -> None: ...
def group_shift_indexer(
out: np.ndarray, # int64_t[::1]
labels: np.ndarray, # const int64_t[:]
ngroups: int,
periods: int,
) -> None: ...
def group_fillna_indexer(
out: np.ndarray, # ndarray[intp_t]
labels: np.ndarray, # ndarray[int64_t]
sorted_labels: npt.NDArray[np.intp],
mask: npt.NDArray[np.uint8],
direction: Literal["ffill", "bfill"],
limit: int, # int64_t
dropna: bool,
) -> None: ...
def group_any_all(
out: np.ndarray, # uint8_t[::1]
values: np.ndarray, # const uint8_t[::1]
labels: np.ndarray, # const int64_t[:]
mask: np.ndarray, # const uint8_t[::1]
val_test: Literal["any", "all"],
skipna: bool,
) -> None: ...
def group_add(
out: np.ndarray, # complexfloating_t[:, ::1]
counts: np.ndarray, # int64_t[::1]
values: np.ndarray, # ndarray[complexfloating_t, ndim=2]
labels: np.ndarray, # const intp_t[:]
min_count: int = ...,
datetimelike: bool = ...,
) -> None: ...
def group_prod(
out: np.ndarray, # floating[:, ::1]
counts: np.ndarray, # int64_t[::1]
values: np.ndarray, # ndarray[floating, ndim=2]
labels: np.ndarray, # const intp_t[:]
min_count: int = ...,
) -> None: ...
def group_var(
out: np.ndarray, # floating[:, ::1]
counts: np.ndarray, # int64_t[::1]
values: np.ndarray, # ndarray[floating, ndim=2]
labels: np.ndarray, # const intp_t[:]
min_count: int = ..., # Py_ssize_t
ddof: int = ..., # int64_t
) -> None: ...
def group_mean(
out: np.ndarray, # floating[:, ::1]
counts: np.ndarray, # int64_t[::1]
values: np.ndarray, # ndarray[floating, ndim=2]
labels: np.ndarray, # const intp_t[:]
min_count: int = ..., # Py_ssize_t
is_datetimelike: bool = ..., # bint
mask: np.ndarray | None = ...,
result_mask: np.ndarray | None = ...,
) -> None: ...
def group_ohlc(
out: np.ndarray, # floating[:, ::1]
counts: np.ndarray, # int64_t[::1]
values: np.ndarray, # ndarray[floating, ndim=2]
labels: np.ndarray, # const intp_t[:]
min_count: int = ...,
) -> None: ...
def group_quantile(
out: npt.NDArray[np.float64],
values: np.ndarray, # ndarray[numeric, ndim=1]
labels: npt.NDArray[np.intp],
mask: npt.NDArray[np.uint8],
sort_indexer: npt.NDArray[np.intp], # const
qs: npt.NDArray[np.float64], # const
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
) -> None: ...
def group_last(
out: np.ndarray, # rank_t[:, ::1]
counts: np.ndarray, # int64_t[::1]
values: np.ndarray, # ndarray[rank_t, ndim=2]
labels: np.ndarray, # const int64_t[:]
min_count: int = ..., # Py_ssize_t
) -> None: ...
def group_nth(
out: np.ndarray, # rank_t[:, ::1]
counts: np.ndarray, # int64_t[::1]
values: np.ndarray, # ndarray[rank_t, ndim=2]
labels: np.ndarray, # const int64_t[:]
min_count: int = ..., # int64_t
rank: int = ..., # int64_t
) -> None: ...
def group_rank(
out: np.ndarray, # float64_t[:, ::1]
values: np.ndarray, # ndarray[rank_t, ndim=2]
labels: np.ndarray, # const int64_t[:]
ngroups: int,
is_datetimelike: bool,
ties_method: Literal["aveage", "min", "max", "first", "dense"] = ...,
ascending: bool = ...,
pct: bool = ...,
na_option: Literal["keep", "top", "bottom"] = ...,
) -> None: ...
def group_max(
out: np.ndarray, # groupby_t[:, ::1]
counts: np.ndarray, # int64_t[::1]
values: np.ndarray, # ndarray[groupby_t, ndim=2]
labels: np.ndarray, # const int64_t[:]
min_count: int = ...,
mask: np.ndarray | None = ...,
result_mask: np.ndarray | None = ...,
) -> None: ...
def group_min(
out: np.ndarray, # groupby_t[:, ::1]
counts: np.ndarray, # int64_t[::1]
values: np.ndarray, # ndarray[groupby_t, ndim=2]
labels: np.ndarray, # const int64_t[:]
min_count: int = ...,
mask: np.ndarray | None = ...,
result_mask: np.ndarray | None = ...,
) -> None: ...
def group_cummin(
out: np.ndarray, # groupby_t[:, ::1]
values: np.ndarray, # ndarray[groupby_t, ndim=2]
labels: np.ndarray, # const int64_t[:]
ngroups: int,
is_datetimelike: bool,
) -> None: ...
def group_cummax(
out: np.ndarray, # groupby_t[:, ::1]
values: np.ndarray, # ndarray[groupby_t, ndim=2]
labels: np.ndarray, # const int64_t[:]
ngroups: int,
is_datetimelike: bool,
) -> None: ...