A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/openpyxl/utils/dataframe.py

92 lines
2.5 KiB

# Copyright (c) 2010-2022 openpyxl
from itertools import accumulate
import operator
from openpyxl.compat.product import prod
def dataframe_to_rows(df, index=True, header=True):
"""
Convert a Pandas dataframe into something suitable for passing into a worksheet.
If index is True then the index will be included, starting one row below the header.
If header is True then column headers will be included starting one column to the right.
Formatting should be done by client code.
"""
import numpy
from pandas import Timestamp
blocks = df._data.blocks
ncols = sum(b.shape[0] for b in blocks)
data = [None] * ncols
for b in blocks:
values = b.values
if b.dtype.type == numpy.datetime64:
values = numpy.array([Timestamp(v) for v in values.ravel()])
values = values.reshape(b.shape)
result = values.tolist()
for col_loc, col in zip(b.mgr_locs, result):
data[col_loc] = col
if header:
if df.columns.nlevels > 1:
rows = expand_index(df.columns, header)
else:
rows = [list(df.columns.values)]
for row in rows:
n = []
for v in row:
if isinstance(v, numpy.datetime64):
v = Timestamp(v)
n.append(v)
row = n
if index:
row = [None]*df.index.nlevels + row
yield row
if index:
yield df.index.names
expanded = ([v] for v in df.index)
if df.index.nlevels > 1:
expanded = expand_index(df.index)
for idx, v in enumerate(expanded):
row = [data[j][idx] for j in range(ncols)]
if index:
row = v + row
yield row
def expand_index(index, header=False):
"""
Expand axis or column Multiindex
For columns use header = True
For axes use header = False (default)
"""
shape = index.levshape
depth = prod(shape)
row = [None] * index.nlevels
lengths = [depth / size for size in accumulate(shape, operator.mul)] # child index lengths
columns = [ [] for l in index.names] # avoid copied list gotchas
for idx, entry in enumerate(index):
row = [None] * index.nlevels
for level, v in enumerate(entry):
length = lengths[level]
if idx % length:
v = None
row[level] = v
if header:
columns[level].append(v)
if not header:
yield row
if header:
for row in columns:
yield row