A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/random/bit_generator.pyi

109 lines
3.3 KiB

import abc
from threading import Lock
from collections.abc import Callable, Mapping, Sequence
from typing import (
Any,
NamedTuple,
TypedDict,
TypeVar,
Union,
overload,
Literal,
)
from numpy import dtype, ndarray, uint32, uint64
from numpy._typing import _ArrayLikeInt_co, _ShapeLike, _SupportsDType, _UInt32Codes, _UInt64Codes
_T = TypeVar("_T")
_DTypeLikeUint32 = Union[
dtype[uint32],
_SupportsDType[dtype[uint32]],
type[uint32],
_UInt32Codes,
]
_DTypeLikeUint64 = Union[
dtype[uint64],
_SupportsDType[dtype[uint64]],
type[uint64],
_UInt64Codes,
]
class _SeedSeqState(TypedDict):
entropy: None | int | Sequence[int]
spawn_key: tuple[int, ...]
pool_size: int
n_children_spawned: int
class _Interface(NamedTuple):
state_address: Any
state: Any
next_uint64: Any
next_uint32: Any
next_double: Any
bit_generator: Any
class ISeedSequence(abc.ABC):
@abc.abstractmethod
def generate_state(
self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ...
) -> ndarray[Any, dtype[uint32 | uint64]]: ...
class ISpawnableSeedSequence(ISeedSequence):
@abc.abstractmethod
def spawn(self: _T, n_children: int) -> list[_T]: ...
class SeedlessSeedSequence(ISpawnableSeedSequence):
def generate_state(
self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ...
) -> ndarray[Any, dtype[uint32 | uint64]]: ...
def spawn(self: _T, n_children: int) -> list[_T]: ...
class SeedSequence(ISpawnableSeedSequence):
entropy: None | int | Sequence[int]
spawn_key: tuple[int, ...]
pool_size: int
n_children_spawned: int
pool: ndarray[Any, dtype[uint32]]
def __init__(
self,
entropy: None | int | Sequence[int] | _ArrayLikeInt_co = ...,
*,
spawn_key: Sequence[int] = ...,
pool_size: int = ...,
n_children_spawned: int = ...,
) -> None: ...
def __repr__(self) -> str: ...
@property
def state(
self,
) -> _SeedSeqState: ...
def generate_state(
self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ...
) -> ndarray[Any, dtype[uint32 | uint64]]: ...
def spawn(self, n_children: int) -> list[SeedSequence]: ...
class BitGenerator(abc.ABC):
lock: Lock
def __init__(self, seed: None | _ArrayLikeInt_co | SeedSequence = ...) -> None: ...
def __getstate__(self) -> dict[str, Any]: ...
def __setstate__(self, state: dict[str, Any]) -> None: ...
def __reduce__(
self,
) -> tuple[Callable[[str], BitGenerator], tuple[str], tuple[dict[str, Any]]]: ...
@abc.abstractmethod
@property
def state(self) -> Mapping[str, Any]: ...
@state.setter
def state(self, value: Mapping[str, Any]) -> None: ...
@overload
def random_raw(self, size: None = ..., output: Literal[True] = ...) -> int: ... # type: ignore[misc]
@overload
def random_raw(self, size: _ShapeLike = ..., output: Literal[True] = ...) -> ndarray[Any, dtype[uint64]]: ... # type: ignore[misc]
@overload
def random_raw(self, size: None | _ShapeLike = ..., output: Literal[False] = ...) -> None: ... # type: ignore[misc]
def _benchmark(self, cnt: int, method: str = ...) -> None: ...
@property
def ctypes(self) -> _Interface: ...
@property
def cffi(self) -> _Interface: ...