A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/random/_generator.pyi

638 lines
21 KiB

from collections.abc import Callable
from typing import Any, Union, overload, TypeVar, Literal
from numpy import (
bool_,
dtype,
float32,
float64,
int8,
int16,
int32,
int64,
int_,
ndarray,
uint,
uint8,
uint16,
uint32,
uint64,
)
from numpy.random import BitGenerator, SeedSequence
from numpy._typing import (
ArrayLike,
_ArrayLikeFloat_co,
_ArrayLikeInt_co,
_DoubleCodes,
_DTypeLikeBool,
_DTypeLikeInt,
_DTypeLikeUInt,
_Float32Codes,
_Float64Codes,
_Int8Codes,
_Int16Codes,
_Int32Codes,
_Int64Codes,
_IntCodes,
_ShapeLike,
_SingleCodes,
_SupportsDType,
_UInt8Codes,
_UInt16Codes,
_UInt32Codes,
_UInt64Codes,
_UIntCodes,
)
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
_DTypeLikeFloat32 = Union[
dtype[float32],
_SupportsDType[dtype[float32]],
type[float32],
_Float32Codes,
_SingleCodes,
]
_DTypeLikeFloat64 = Union[
dtype[float64],
_SupportsDType[dtype[float64]],
type[float],
type[float64],
_Float64Codes,
_DoubleCodes,
]
class Generator:
def __init__(self, bit_generator: BitGenerator) -> None: ...
def __repr__(self) -> str: ...
def __str__(self) -> str: ...
def __getstate__(self) -> dict[str, Any]: ...
def __setstate__(self, state: dict[str, Any]) -> None: ...
def __reduce__(self) -> tuple[Callable[[str], Generator], tuple[str], dict[str, Any]]: ...
@property
def bit_generator(self) -> BitGenerator: ...
def bytes(self, length: int) -> bytes: ...
@overload
def standard_normal( # type: ignore[misc]
self,
size: None = ...,
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
out: None = ...,
) -> float: ...
@overload
def standard_normal( # type: ignore[misc]
self,
size: _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_normal( # type: ignore[misc]
self,
*,
out: ndarray[Any, dtype[float64]] = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_normal( # type: ignore[misc]
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat32 = ...,
out: None | ndarray[Any, dtype[float32]] = ...,
) -> ndarray[Any, dtype[float32]]: ...
@overload
def standard_normal( # type: ignore[misc]
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat64 = ...,
out: None | ndarray[Any, dtype[float64]] = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ...
@overload
def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ...
@overload
def standard_exponential( # type: ignore[misc]
self,
size: None = ...,
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
method: Literal["zig", "inv"] = ...,
out: None = ...,
) -> float: ...
@overload
def standard_exponential(
self,
size: _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_exponential(
self,
*,
out: ndarray[Any, dtype[float64]] = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_exponential(
self,
size: _ShapeLike = ...,
*,
method: Literal["zig", "inv"] = ...,
out: None | ndarray[Any, dtype[float64]] = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_exponential(
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat32 = ...,
method: Literal["zig", "inv"] = ...,
out: None | ndarray[Any, dtype[float32]] = ...,
) -> ndarray[Any, dtype[float32]]: ...
@overload
def standard_exponential(
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat64 = ...,
method: Literal["zig", "inv"] = ...,
out: None | ndarray[Any, dtype[float64]] = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def random( # type: ignore[misc]
self,
size: None = ...,
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
out: None = ...,
) -> float: ...
@overload
def random(
self,
*,
out: ndarray[Any, dtype[float64]] = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def random(
self,
size: _ShapeLike = ...,
*,
out: None | ndarray[Any, dtype[float64]] = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def random(
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat32 = ...,
out: None | ndarray[Any, dtype[float32]] = ...,
) -> ndarray[Any, dtype[float32]]: ...
@overload
def random(
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat64 = ...,
out: None | ndarray[Any, dtype[float64]] = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def beta(
self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def exponential(
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: int,
high: None | int = ...,
) -> int: ...
@overload
def integers( # type: ignore[misc]
self,
low: int,
high: None | int = ...,
size: None = ...,
dtype: _DTypeLikeBool = ...,
endpoint: bool = ...,
) -> bool: ...
@overload
def integers( # type: ignore[misc]
self,
low: int,
high: None | int = ...,
size: None = ...,
dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
endpoint: bool = ...,
) -> int: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[int64]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: _DTypeLikeBool = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[bool_]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[int8]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[int16]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[int32]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[int64]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[uint8]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[uint16]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[uint32]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[uint64]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[int_]]: ...
@overload
def integers( # type: ignore[misc]
self,
low: _ArrayLikeInt_co,
high: None | _ArrayLikeInt_co = ...,
size: None | _ShapeLike = ...,
dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
endpoint: bool = ...,
) -> ndarray[Any, dtype[uint]]: ...
# TODO: Use a TypeVar _T here to get away from Any output? Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> _T | ndarray[Any,Any]
@overload
def choice(
self,
a: int,
size: None = ...,
replace: bool = ...,
p: None | _ArrayLikeFloat_co = ...,
axis: int = ...,
shuffle: bool = ...,
) -> int: ...
@overload
def choice(
self,
a: int,
size: _ShapeLike = ...,
replace: bool = ...,
p: None | _ArrayLikeFloat_co = ...,
axis: int = ...,
shuffle: bool = ...,
) -> ndarray[Any, dtype[int64]]: ...
@overload
def choice(
self,
a: ArrayLike,
size: None = ...,
replace: bool = ...,
p: None | _ArrayLikeFloat_co = ...,
axis: int = ...,
shuffle: bool = ...,
) -> Any: ...
@overload
def choice(
self,
a: ArrayLike,
size: _ShapeLike = ...,
replace: bool = ...,
p: None | _ArrayLikeFloat_co = ...,
axis: int = ...,
shuffle: bool = ...,
) -> ndarray[Any, Any]: ...
@overload
def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def uniform(
self,
low: _ArrayLikeFloat_co = ...,
high: _ArrayLikeFloat_co = ...,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def normal(
self,
loc: _ArrayLikeFloat_co = ...,
scale: _ArrayLikeFloat_co = ...,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_gamma( # type: ignore[misc]
self,
shape: float,
size: None = ...,
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
out: None = ...,
) -> float: ...
@overload
def standard_gamma(
self,
shape: _ArrayLikeFloat_co,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_gamma(
self,
shape: _ArrayLikeFloat_co,
*,
out: ndarray[Any, dtype[float64]] = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_gamma(
self,
shape: _ArrayLikeFloat_co,
size: None | _ShapeLike = ...,
dtype: _DTypeLikeFloat32 = ...,
out: None | ndarray[Any, dtype[float32]] = ...,
) -> ndarray[Any, dtype[float32]]: ...
@overload
def standard_gamma(
self,
shape: _ArrayLikeFloat_co,
size: None | _ShapeLike = ...,
dtype: _DTypeLikeFloat64 = ...,
out: None | ndarray[Any, dtype[float64]] = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def gamma(
self,
shape: _ArrayLikeFloat_co,
scale: _ArrayLikeFloat_co = ...,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def f(
self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def noncentral_f(
self,
dfnum: _ArrayLikeFloat_co,
dfden: _ArrayLikeFloat_co,
nonc: _ArrayLikeFloat_co,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def chisquare(
self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def noncentral_chisquare(
self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def standard_t(
self, df: _ArrayLikeFloat_co, size: None = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_t(
self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def vonmises(
self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def pareto(
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def weibull(
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def power(
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
@overload
def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def laplace(
self,
loc: _ArrayLikeFloat_co = ...,
scale: _ArrayLikeFloat_co = ...,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def gumbel(
self,
loc: _ArrayLikeFloat_co = ...,
scale: _ArrayLikeFloat_co = ...,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def logistic(
self,
loc: _ArrayLikeFloat_co = ...,
scale: _ArrayLikeFloat_co = ...,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def lognormal(
self,
mean: _ArrayLikeFloat_co = ...,
sigma: _ArrayLikeFloat_co = ...,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def rayleigh(
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def wald(
self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
@overload
def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def triangular(
self,
left: _ArrayLikeFloat_co,
mode: _ArrayLikeFloat_co,
right: _ArrayLikeFloat_co,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[float64]]: ...
@overload
def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc]
@overload
def binomial(
self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[int64]]: ...
@overload
def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc]
@overload
def negative_binomial(
self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[int64]]: ...
@overload
def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc]
@overload
def poisson(
self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[int64]]: ...
@overload
def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc]
@overload
def zipf(
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[int64]]: ...
@overload
def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
@overload
def geometric(
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[int64]]: ...
@overload
def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
@overload
def hypergeometric(
self,
ngood: _ArrayLikeInt_co,
nbad: _ArrayLikeInt_co,
nsample: _ArrayLikeInt_co,
size: None | _ShapeLike = ...,
) -> ndarray[Any, dtype[int64]]: ...
@overload
def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
@overload
def logseries(
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[int64]]: ...
def multivariate_normal(
self,
mean: _ArrayLikeFloat_co,
cov: _ArrayLikeFloat_co,
size: None | _ShapeLike = ...,
check_valid: Literal["warn", "raise", "ignore"] = ...,
tol: float = ...,
*,
method: Literal["svd", "eigh", "cholesky"] = ...,
) -> ndarray[Any, dtype[float64]]: ...
def multinomial(
self, n: _ArrayLikeInt_co,
pvals: _ArrayLikeFloat_co,
size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[int64]]: ...
def multivariate_hypergeometric(
self,
colors: _ArrayLikeInt_co,
nsample: int,
size: None | _ShapeLike = ...,
method: Literal["marginals", "count"] = ...,
) -> ndarray[Any, dtype[int64]]: ...
def dirichlet(
self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
) -> ndarray[Any, dtype[float64]]: ...
def permuted(
self, x: ArrayLike, *, axis: None | int = ..., out: None | ndarray[Any, Any] = ...
) -> ndarray[Any, Any]: ...
def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
def default_rng(
seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator = ...
) -> Generator: ...