A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/ma/tests/test_subclassing.py

386 lines
14 KiB

# pylint: disable-msg=W0611, W0612, W0511,R0201
"""Tests suite for MaskedArray & subclassing.
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
"""
import numpy as np
from numpy.testing import assert_, assert_raises
from numpy.ma.testutils import assert_equal
from numpy.ma.core import (
array, arange, masked, MaskedArray, masked_array, log, add, hypot,
divide, asarray, asanyarray, nomask
)
# from numpy.ma.core import (
def assert_startswith(a, b):
# produces a better error message than assert_(a.startswith(b))
assert_equal(a[:len(b)], b)
class SubArray(np.ndarray):
# Defines a generic np.ndarray subclass, that stores some metadata
# in the dictionary `info`.
def __new__(cls,arr,info={}):
x = np.asanyarray(arr).view(cls)
x.info = info.copy()
return x
def __array_finalize__(self, obj):
super().__array_finalize__(obj)
self.info = getattr(obj, 'info', {}).copy()
return
def __add__(self, other):
result = super().__add__(other)
result.info['added'] = result.info.get('added', 0) + 1
return result
def __iadd__(self, other):
result = super().__iadd__(other)
result.info['iadded'] = result.info.get('iadded', 0) + 1
return result
subarray = SubArray
class SubMaskedArray(MaskedArray):
"""Pure subclass of MaskedArray, keeping some info on subclass."""
def __new__(cls, info=None, **kwargs):
obj = super().__new__(cls, **kwargs)
obj._optinfo['info'] = info
return obj
class MSubArray(SubArray, MaskedArray):
def __new__(cls, data, info={}, mask=nomask):
subarr = SubArray(data, info)
_data = MaskedArray.__new__(cls, data=subarr, mask=mask)
_data.info = subarr.info
return _data
@property
def _series(self):
_view = self.view(MaskedArray)
_view._sharedmask = False
return _view
msubarray = MSubArray
# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
# setting to non-class values (and thus np.ma.core.masked_print_option)
# and overrides __array_wrap__, updating the info dict, to check that this
# doesn't get destroyed by MaskedArray._update_from. But this one also needs
# its own iterator...
class CSAIterator:
"""
Flat iterator object that uses its own setter/getter
(works around ndarray.flat not propagating subclass setters/getters
see https://github.com/numpy/numpy/issues/4564)
roughly following MaskedIterator
"""
def __init__(self, a):
self._original = a
self._dataiter = a.view(np.ndarray).flat
def __iter__(self):
return self
def __getitem__(self, indx):
out = self._dataiter.__getitem__(indx)
if not isinstance(out, np.ndarray):
out = out.__array__()
out = out.view(type(self._original))
return out
def __setitem__(self, index, value):
self._dataiter[index] = self._original._validate_input(value)
def __next__(self):
return next(self._dataiter).__array__().view(type(self._original))
class ComplicatedSubArray(SubArray):
def __str__(self):
return f'myprefix {self.view(SubArray)} mypostfix'
def __repr__(self):
# Return a repr that does not start with 'name('
return f'<{self.__class__.__name__} {self}>'
def _validate_input(self, value):
if not isinstance(value, ComplicatedSubArray):
raise ValueError("Can only set to MySubArray values")
return value
def __setitem__(self, item, value):
# validation ensures direct assignment with ndarray or
# masked_print_option will fail
super().__setitem__(item, self._validate_input(value))
def __getitem__(self, item):
# ensure getter returns our own class also for scalars
value = super().__getitem__(item)
if not isinstance(value, np.ndarray): # scalar
value = value.__array__().view(ComplicatedSubArray)
return value
@property
def flat(self):
return CSAIterator(self)
@flat.setter
def flat(self, value):
y = self.ravel()
y[:] = value
def __array_wrap__(self, obj, context=None):
obj = super().__array_wrap__(obj, context)
if context is not None and context[0] is np.multiply:
obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
return obj
class TestSubclassing:
# Test suite for masked subclasses of ndarray.
def setup(self):
x = np.arange(5, dtype='float')
mx = msubarray(x, mask=[0, 1, 0, 0, 0])
self.data = (x, mx)
def test_data_subclassing(self):
# Tests whether the subclass is kept.
x = np.arange(5)
m = [0, 0, 1, 0, 0]
xsub = SubArray(x)
xmsub = masked_array(xsub, mask=m)
assert_(isinstance(xmsub, MaskedArray))
assert_equal(xmsub._data, xsub)
assert_(isinstance(xmsub._data, SubArray))
def test_maskedarray_subclassing(self):
# Tests subclassing MaskedArray
(x, mx) = self.data
assert_(isinstance(mx._data, subarray))
def test_masked_unary_operations(self):
# Tests masked_unary_operation
(x, mx) = self.data
with np.errstate(divide='ignore'):
assert_(isinstance(log(mx), msubarray))
assert_equal(log(x), np.log(x))
def test_masked_binary_operations(self):
# Tests masked_binary_operation
(x, mx) = self.data
# Result should be a msubarray
assert_(isinstance(add(mx, mx), msubarray))
assert_(isinstance(add(mx, x), msubarray))
# Result should work
assert_equal(add(mx, x), mx+x)
assert_(isinstance(add(mx, mx)._data, subarray))
assert_(isinstance(add.outer(mx, mx), msubarray))
assert_(isinstance(hypot(mx, mx), msubarray))
assert_(isinstance(hypot(mx, x), msubarray))
def test_masked_binary_operations2(self):
# Tests domained_masked_binary_operation
(x, mx) = self.data
xmx = masked_array(mx.data.__array__(), mask=mx.mask)
assert_(isinstance(divide(mx, mx), msubarray))
assert_(isinstance(divide(mx, x), msubarray))
assert_equal(divide(mx, mx), divide(xmx, xmx))
def test_attributepropagation(self):
x = array(arange(5), mask=[0]+[1]*4)
my = masked_array(subarray(x))
ym = msubarray(x)
#
z = (my+1)
assert_(isinstance(z, MaskedArray))
assert_(not isinstance(z, MSubArray))
assert_(isinstance(z._data, SubArray))
assert_equal(z._data.info, {})
#
z = (ym+1)
assert_(isinstance(z, MaskedArray))
assert_(isinstance(z, MSubArray))
assert_(isinstance(z._data, SubArray))
assert_(z._data.info['added'] > 0)
# Test that inplace methods from data get used (gh-4617)
ym += 1
assert_(isinstance(ym, MaskedArray))
assert_(isinstance(ym, MSubArray))
assert_(isinstance(ym._data, SubArray))
assert_(ym._data.info['iadded'] > 0)
#
ym._set_mask([1, 0, 0, 0, 1])
assert_equal(ym._mask, [1, 0, 0, 0, 1])
ym._series._set_mask([0, 0, 0, 0, 1])
assert_equal(ym._mask, [0, 0, 0, 0, 1])
#
xsub = subarray(x, info={'name':'x'})
mxsub = masked_array(xsub)
assert_(hasattr(mxsub, 'info'))
assert_equal(mxsub.info, xsub.info)
def test_subclasspreservation(self):
# Checks that masked_array(...,subok=True) preserves the class.
x = np.arange(5)
m = [0, 0, 1, 0, 0]
xinfo = [(i, j) for (i, j) in zip(x, m)]
xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
#
mxsub = masked_array(xsub, subok=False)
assert_(not isinstance(mxsub, MSubArray))
assert_(isinstance(mxsub, MaskedArray))
assert_equal(mxsub._mask, m)
#
mxsub = asarray(xsub)
assert_(not isinstance(mxsub, MSubArray))
assert_(isinstance(mxsub, MaskedArray))
assert_equal(mxsub._mask, m)
#
mxsub = masked_array(xsub, subok=True)
assert_(isinstance(mxsub, MSubArray))
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, xsub._mask)
#
mxsub = asanyarray(xsub)
assert_(isinstance(mxsub, MSubArray))
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, m)
def test_subclass_items(self):
"""test that getter and setter go via baseclass"""
x = np.arange(5)
xcsub = ComplicatedSubArray(x)
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
# getter should return a ComplicatedSubArray, even for single item
# first check we wrote ComplicatedSubArray correctly
assert_(isinstance(xcsub[1], ComplicatedSubArray))
assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
# now that it propagates inside the MaskedArray
assert_(isinstance(mxcsub[1], ComplicatedSubArray))
assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
assert_(mxcsub[0] is masked)
assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
# also for flattened version (which goes via MaskedIterator)
assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
assert_(mxcsub.flat[0] is masked)
assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
# setter should only work with ComplicatedSubArray input
# first check we wrote ComplicatedSubArray correctly
assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
# now that it propagates inside the MaskedArray
assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
mxcsub[1] = xcsub[4]
mxcsub[1:4] = xcsub[1:4]
# also for flattened version (which goes via MaskedIterator)
assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
mxcsub.flat[1] = xcsub[4]
mxcsub.flat[1:4] = xcsub[1:4]
def test_subclass_nomask_items(self):
x = np.arange(5)
xcsub = ComplicatedSubArray(x)
mxcsub_nomask = masked_array(xcsub)
assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
def test_subclass_repr(self):
"""test that repr uses the name of the subclass
and 'array' for np.ndarray"""
x = np.arange(5)
mx = masked_array(x, mask=[True, False, True, False, False])
assert_startswith(repr(mx), 'masked_array')
xsub = SubArray(x)
mxsub = masked_array(xsub, mask=[True, False, True, False, False])
assert_startswith(repr(mxsub),
f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')
def test_subclass_str(self):
"""test str with subclass that has overridden str, setitem"""
# first without override
x = np.arange(5)
xsub = SubArray(x)
mxsub = masked_array(xsub, mask=[True, False, True, False, False])
assert_equal(str(mxsub), '[-- 1 -- 3 4]')
xcsub = ComplicatedSubArray(x)
assert_raises(ValueError, xcsub.__setitem__, 0,
np.ma.core.masked_print_option)
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
def test_pure_subclass_info_preservation(self):
# Test that ufuncs and methods conserve extra information consistently;
# see gh-7122.
arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
diff1 = np.subtract(arr1, arr2)
assert_('info' in diff1._optinfo)
assert_(diff1._optinfo['info'] == 'test')
diff2 = arr1 - arr2
assert_('info' in diff2._optinfo)
assert_(diff2._optinfo['info'] == 'test')
class ArrayNoInheritance:
"""Quantity-like class that does not inherit from ndarray"""
def __init__(self, data, units):
self.magnitude = data
self.units = units
def __getattr__(self, attr):
return getattr(self.magnitude, attr)
def test_array_no_inheritance():
data_masked = np.ma.array([1, 2, 3], mask=[True, False, True])
data_masked_units = ArrayNoInheritance(data_masked, 'meters')
# Get the masked representation of the Quantity-like class
new_array = np.ma.array(data_masked_units)
assert_equal(data_masked.data, new_array.data)
assert_equal(data_masked.mask, new_array.mask)
# Test sharing the mask
data_masked.mask = [True, False, False]
assert_equal(data_masked.mask, new_array.mask)
assert_(new_array.sharedmask)
# Get the masked representation of the Quantity-like class
new_array = np.ma.array(data_masked_units, copy=True)
assert_equal(data_masked.data, new_array.data)
assert_equal(data_masked.mask, new_array.mask)
# Test that the mask is not shared when copy=True
data_masked.mask = [True, False, True]
assert_equal([True, False, False], new_array.mask)
assert_(not new_array.sharedmask)
# Get the masked representation of the Quantity-like class
new_array = np.ma.array(data_masked_units, keep_mask=False)
assert_equal(data_masked.data, new_array.data)
# The change did not affect the original mask
assert_equal(data_masked.mask, [True, False, True])
# Test that the mask is False and not shared when keep_mask=False
assert_(not new_array.mask)
assert_(not new_array.sharedmask)