A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/lib/tests/test_ufunclike.py

104 lines
3.2 KiB

import numpy as np
import numpy.core as nx
import numpy.lib.ufunclike as ufl
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_warns, assert_raises
)
class TestUfunclike:
def test_isposinf(self):
a = nx.array([nx.inf, -nx.inf, nx.nan, 0.0, 3.0, -3.0])
out = nx.zeros(a.shape, bool)
tgt = nx.array([True, False, False, False, False, False])
res = ufl.isposinf(a)
assert_equal(res, tgt)
res = ufl.isposinf(a, out)
assert_equal(res, tgt)
assert_equal(out, tgt)
a = a.astype(np.complex_)
with assert_raises(TypeError):
ufl.isposinf(a)
def test_isneginf(self):
a = nx.array([nx.inf, -nx.inf, nx.nan, 0.0, 3.0, -3.0])
out = nx.zeros(a.shape, bool)
tgt = nx.array([False, True, False, False, False, False])
res = ufl.isneginf(a)
assert_equal(res, tgt)
res = ufl.isneginf(a, out)
assert_equal(res, tgt)
assert_equal(out, tgt)
a = a.astype(np.complex_)
with assert_raises(TypeError):
ufl.isneginf(a)
def test_fix(self):
a = nx.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]])
out = nx.zeros(a.shape, float)
tgt = nx.array([[1., 1., 1., 1.], [-1., -1., -1., -1.]])
res = ufl.fix(a)
assert_equal(res, tgt)
res = ufl.fix(a, out)
assert_equal(res, tgt)
assert_equal(out, tgt)
assert_equal(ufl.fix(3.14), 3)
def test_fix_with_subclass(self):
class MyArray(nx.ndarray):
def __new__(cls, data, metadata=None):
res = nx.array(data, copy=True).view(cls)
res.metadata = metadata
return res
def __array_wrap__(self, obj, context=None):
if isinstance(obj, MyArray):
obj.metadata = self.metadata
return obj
def __array_finalize__(self, obj):
self.metadata = getattr(obj, 'metadata', None)
return self
a = nx.array([1.1, -1.1])
m = MyArray(a, metadata='foo')
f = ufl.fix(m)
assert_array_equal(f, nx.array([1, -1]))
assert_(isinstance(f, MyArray))
assert_equal(f.metadata, 'foo')
# check 0d arrays don't decay to scalars
m0d = m[0,...]
m0d.metadata = 'bar'
f0d = ufl.fix(m0d)
assert_(isinstance(f0d, MyArray))
assert_equal(f0d.metadata, 'bar')
def test_deprecated(self):
# NumPy 1.13.0, 2017-04-26
assert_warns(DeprecationWarning, ufl.fix, [1, 2], y=nx.empty(2))
assert_warns(DeprecationWarning, ufl.isposinf, [1, 2], y=nx.empty(2))
assert_warns(DeprecationWarning, ufl.isneginf, [1, 2], y=nx.empty(2))
def test_scalar(self):
x = np.inf
actual = np.isposinf(x)
expected = np.True_
assert_equal(actual, expected)
assert_equal(type(actual), type(expected))
x = -3.4
actual = np.fix(x)
expected = np.float64(-3.0)
assert_equal(actual, expected)
assert_equal(type(actual), type(expected))
out = np.array(0.0)
actual = np.fix(x, out=out)
assert_(actual is out)