A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/lib/tests/test_mixins.py

216 lines
6.9 KiB

import numbers
import operator
import numpy as np
from numpy.testing import assert_, assert_equal, assert_raises
# NOTE: This class should be kept as an exact copy of the example from the
# docstring for NDArrayOperatorsMixin.
class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
def __init__(self, value):
self.value = np.asarray(value)
# One might also consider adding the built-in list type to this
# list, to support operations like np.add(array_like, list)
_HANDLED_TYPES = (np.ndarray, numbers.Number)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
out = kwargs.get('out', ())
for x in inputs + out:
# Only support operations with instances of _HANDLED_TYPES.
# Use ArrayLike instead of type(self) for isinstance to
# allow subclasses that don't override __array_ufunc__ to
# handle ArrayLike objects.
if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):
return NotImplemented
# Defer to the implementation of the ufunc on unwrapped values.
inputs = tuple(x.value if isinstance(x, ArrayLike) else x
for x in inputs)
if out:
kwargs['out'] = tuple(
x.value if isinstance(x, ArrayLike) else x
for x in out)
result = getattr(ufunc, method)(*inputs, **kwargs)
if type(result) is tuple:
# multiple return values
return tuple(type(self)(x) for x in result)
elif method == 'at':
# no return value
return None
else:
# one return value
return type(self)(result)
def __repr__(self):
return '%s(%r)' % (type(self).__name__, self.value)
def wrap_array_like(result):
if type(result) is tuple:
return tuple(ArrayLike(r) for r in result)
else:
return ArrayLike(result)
def _assert_equal_type_and_value(result, expected, err_msg=None):
assert_equal(type(result), type(expected), err_msg=err_msg)
if isinstance(result, tuple):
assert_equal(len(result), len(expected), err_msg=err_msg)
for result_item, expected_item in zip(result, expected):
_assert_equal_type_and_value(result_item, expected_item, err_msg)
else:
assert_equal(result.value, expected.value, err_msg=err_msg)
assert_equal(getattr(result.value, 'dtype', None),
getattr(expected.value, 'dtype', None), err_msg=err_msg)
_ALL_BINARY_OPERATORS = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.gt,
operator.ge,
operator.add,
operator.sub,
operator.mul,
operator.truediv,
operator.floordiv,
operator.mod,
divmod,
pow,
operator.lshift,
operator.rshift,
operator.and_,
operator.xor,
operator.or_,
]
class TestNDArrayOperatorsMixin:
def test_array_like_add(self):
def check(result):
_assert_equal_type_and_value(result, ArrayLike(0))
check(ArrayLike(0) + 0)
check(0 + ArrayLike(0))
check(ArrayLike(0) + np.array(0))
check(np.array(0) + ArrayLike(0))
check(ArrayLike(np.array(0)) + 0)
check(0 + ArrayLike(np.array(0)))
check(ArrayLike(np.array(0)) + np.array(0))
check(np.array(0) + ArrayLike(np.array(0)))
def test_inplace(self):
array_like = ArrayLike(np.array([0]))
array_like += 1
_assert_equal_type_and_value(array_like, ArrayLike(np.array([1])))
array = np.array([0])
array += ArrayLike(1)
_assert_equal_type_and_value(array, ArrayLike(np.array([1])))
def test_opt_out(self):
class OptOut:
"""Object that opts out of __array_ufunc__."""
__array_ufunc__ = None
def __add__(self, other):
return self
def __radd__(self, other):
return self
array_like = ArrayLike(1)
opt_out = OptOut()
# supported operations
assert_(array_like + opt_out is opt_out)
assert_(opt_out + array_like is opt_out)
# not supported
with assert_raises(TypeError):
# don't use the Python default, array_like = array_like + opt_out
array_like += opt_out
with assert_raises(TypeError):
array_like - opt_out
with assert_raises(TypeError):
opt_out - array_like
def test_subclass(self):
class SubArrayLike(ArrayLike):
"""Should take precedence over ArrayLike."""
x = ArrayLike(0)
y = SubArrayLike(1)
_assert_equal_type_and_value(x + y, y)
_assert_equal_type_and_value(y + x, y)
def test_object(self):
x = ArrayLike(0)
obj = object()
with assert_raises(TypeError):
x + obj
with assert_raises(TypeError):
obj + x
with assert_raises(TypeError):
x += obj
def test_unary_methods(self):
array = np.array([-1, 0, 1, 2])
array_like = ArrayLike(array)
for op in [operator.neg,
operator.pos,
abs,
operator.invert]:
_assert_equal_type_and_value(op(array_like), ArrayLike(op(array)))
def test_forward_binary_methods(self):
array = np.array([-1, 0, 1, 2])
array_like = ArrayLike(array)
for op in _ALL_BINARY_OPERATORS:
expected = wrap_array_like(op(array, 1))
actual = op(array_like, 1)
err_msg = 'failed for operator {}'.format(op)
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
def test_reflected_binary_methods(self):
for op in _ALL_BINARY_OPERATORS:
expected = wrap_array_like(op(2, 1))
actual = op(2, ArrayLike(1))
err_msg = 'failed for operator {}'.format(op)
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
def test_matmul(self):
array = np.array([1, 2], dtype=np.float64)
array_like = ArrayLike(array)
expected = ArrayLike(np.float64(5))
_assert_equal_type_and_value(expected, np.matmul(array_like, array))
_assert_equal_type_and_value(
expected, operator.matmul(array_like, array))
_assert_equal_type_and_value(
expected, operator.matmul(array, array_like))
def test_ufunc_at(self):
array = ArrayLike(np.array([1, 2, 3, 4]))
assert_(np.negative.at(array, np.array([0, 1])) is None)
_assert_equal_type_and_value(array, ArrayLike([-1, -2, 3, 4]))
def test_ufunc_two_outputs(self):
mantissa, exponent = np.frexp(2 ** -3)
expected = (ArrayLike(mantissa), ArrayLike(exponent))
_assert_equal_type_and_value(
np.frexp(ArrayLike(2 ** -3)), expected)
_assert_equal_type_and_value(
np.frexp(ArrayLike(np.array(2 ** -3))), expected)