A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/lib/tests/test_index_tricks.py

517 lines
18 KiB

import pytest
import numpy as np
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_almost_equal,
assert_array_almost_equal, assert_raises, assert_raises_regex,
)
from numpy.lib.index_tricks import (
mgrid, ogrid, ndenumerate, fill_diagonal, diag_indices, diag_indices_from,
index_exp, ndindex, r_, s_, ix_
)
class TestRavelUnravelIndex:
def test_basic(self):
assert_equal(np.unravel_index(2, (2, 2)), (1, 0))
# test that new shape argument works properly
assert_equal(np.unravel_index(indices=2,
shape=(2, 2)),
(1, 0))
# test that an invalid second keyword argument
# is properly handled, including the old name `dims`.
with assert_raises(TypeError):
np.unravel_index(indices=2, hape=(2, 2))
with assert_raises(TypeError):
np.unravel_index(2, hape=(2, 2))
with assert_raises(TypeError):
np.unravel_index(254, ims=(17, 94))
with assert_raises(TypeError):
np.unravel_index(254, dims=(17, 94))
assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2)
assert_equal(np.unravel_index(254, (17, 94)), (2, 66))
assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254)
assert_raises(ValueError, np.unravel_index, -1, (2, 2))
assert_raises(TypeError, np.unravel_index, 0.5, (2, 2))
assert_raises(ValueError, np.unravel_index, 4, (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (-3, 1), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (2, 1), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (0, -3), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (0, 2), (2, 2))
assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.), (2, 2))
assert_equal(np.unravel_index((2*3 + 1)*6 + 4, (4, 3, 6)), [2, 1, 4])
assert_equal(
np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2*3 + 1)*6 + 4)
arr = np.array([[3, 6, 6], [4, 5, 1]])
assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37])
assert_equal(
np.ravel_multi_index(arr, (7, 6), order='F'), [31, 41, 13])
assert_equal(
np.ravel_multi_index(arr, (4, 6), mode='clip'), [22, 23, 19])
assert_equal(np.ravel_multi_index(arr, (4, 4), mode=('clip', 'wrap')),
[12, 13, 13])
assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621)
assert_equal(np.unravel_index(np.array([22, 41, 37]), (7, 6)),
[[3, 6, 6], [4, 5, 1]])
assert_equal(
np.unravel_index(np.array([31, 41, 13]), (7, 6), order='F'),
[[3, 6, 6], [4, 5, 1]])
assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1])
def test_empty_indices(self):
msg1 = 'indices must be integral: the provided empty sequence was'
msg2 = 'only int indices permitted'
assert_raises_regex(TypeError, msg1, np.unravel_index, [], (10, 3, 5))
assert_raises_regex(TypeError, msg1, np.unravel_index, (), (10, 3, 5))
assert_raises_regex(TypeError, msg2, np.unravel_index, np.array([]),
(10, 3, 5))
assert_equal(np.unravel_index(np.array([],dtype=int), (10, 3, 5)),
[[], [], []])
assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], []),
(10, 3))
assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], ['abc']),
(10, 3))
assert_raises_regex(TypeError, msg2, np.ravel_multi_index,
(np.array([]), np.array([])), (5, 3))
assert_equal(np.ravel_multi_index(
(np.array([], dtype=int), np.array([], dtype=int)), (5, 3)), [])
assert_equal(np.ravel_multi_index(np.array([[], []], dtype=int),
(5, 3)), [])
def test_big_indices(self):
# ravel_multi_index for big indices (issue #7546)
if np.intp == np.int64:
arr = ([1, 29], [3, 5], [3, 117], [19, 2],
[2379, 1284], [2, 2], [0, 1])
assert_equal(
np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)),
[5627771580, 117259570957])
# test unravel_index for big indices (issue #9538)
assert_raises(ValueError, np.unravel_index, 1, (2**32-1, 2**31+1))
# test overflow checking for too big array (issue #7546)
dummy_arr = ([0],[0])
half_max = np.iinfo(np.intp).max // 2
assert_equal(
np.ravel_multi_index(dummy_arr, (half_max, 2)), [0])
assert_raises(ValueError,
np.ravel_multi_index, dummy_arr, (half_max+1, 2))
assert_equal(
np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0])
assert_raises(ValueError,
np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F')
def test_dtypes(self):
# Test with different data types
for dtype in [np.int16, np.uint16, np.int32,
np.uint32, np.int64, np.uint64]:
coords = np.array(
[[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], dtype=dtype)
shape = (5, 8)
uncoords = 8*coords[0]+coords[1]
assert_equal(np.ravel_multi_index(coords, shape), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape))
uncoords = coords[0]+5*coords[1]
assert_equal(
np.ravel_multi_index(coords, shape, order='F'), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape, order='F'))
coords = np.array(
[[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]],
dtype=dtype)
shape = (5, 8, 10)
uncoords = 10*(8*coords[0]+coords[1])+coords[2]
assert_equal(np.ravel_multi_index(coords, shape), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape))
uncoords = coords[0]+5*(coords[1]+8*coords[2])
assert_equal(
np.ravel_multi_index(coords, shape, order='F'), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape, order='F'))
def test_clipmodes(self):
# Test clipmodes
assert_equal(
np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), mode='wrap'),
np.ravel_multi_index([1, 1, 6, 2], (4, 3, 7, 12)))
assert_equal(np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12),
mode=(
'wrap', 'raise', 'clip', 'raise')),
np.ravel_multi_index([1, 1, 0, 2], (4, 3, 7, 12)))
assert_raises(
ValueError, np.ravel_multi_index, [5, 1, -1, 2], (4, 3, 7, 12))
def test_writeability(self):
# See gh-7269
x, y = np.unravel_index([1, 2, 3], (4, 5))
assert_(x.flags.writeable)
assert_(y.flags.writeable)
def test_0d(self):
# gh-580
x = np.unravel_index(0, ())
assert_equal(x, ())
assert_raises_regex(ValueError, "0d array", np.unravel_index, [0], ())
assert_raises_regex(
ValueError, "out of bounds", np.unravel_index, [1], ())
@pytest.mark.parametrize("mode", ["clip", "wrap", "raise"])
def test_empty_array_ravel(self, mode):
res = np.ravel_multi_index(
np.zeros((3, 0), dtype=np.intp), (2, 1, 0), mode=mode)
assert(res.shape == (0,))
with assert_raises(ValueError):
np.ravel_multi_index(
np.zeros((3, 1), dtype=np.intp), (2, 1, 0), mode=mode)
def test_empty_array_unravel(self):
res = np.unravel_index(np.zeros(0, dtype=np.intp), (2, 1, 0))
# res is a tuple of three empty arrays
assert(len(res) == 3)
assert(all(a.shape == (0,) for a in res))
with assert_raises(ValueError):
np.unravel_index([1], (2, 1, 0))
class TestGrid:
def test_basic(self):
a = mgrid[-1:1:10j]
b = mgrid[-1:1:0.1]
assert_(a.shape == (10,))
assert_(b.shape == (20,))
assert_(a[0] == -1)
assert_almost_equal(a[-1], 1)
assert_(b[0] == -1)
assert_almost_equal(b[1]-b[0], 0.1, 11)
assert_almost_equal(b[-1], b[0]+19*0.1, 11)
assert_almost_equal(a[1]-a[0], 2.0/9.0, 11)
def test_linspace_equivalence(self):
y, st = np.linspace(2, 10, retstep=True)
assert_almost_equal(st, 8/49.0)
assert_array_almost_equal(y, mgrid[2:10:50j], 13)
def test_nd(self):
c = mgrid[-1:1:10j, -2:2:10j]
d = mgrid[-1:1:0.1, -2:2:0.2]
assert_(c.shape == (2, 10, 10))
assert_(d.shape == (2, 20, 20))
assert_array_equal(c[0][0, :], -np.ones(10, 'd'))
assert_array_equal(c[1][:, 0], -2*np.ones(10, 'd'))
assert_array_almost_equal(c[0][-1, :], np.ones(10, 'd'), 11)
assert_array_almost_equal(c[1][:, -1], 2*np.ones(10, 'd'), 11)
assert_array_almost_equal(d[0, 1, :] - d[0, 0, :],
0.1*np.ones(20, 'd'), 11)
assert_array_almost_equal(d[1, :, 1] - d[1, :, 0],
0.2*np.ones(20, 'd'), 11)
def test_sparse(self):
grid_full = mgrid[-1:1:10j, -2:2:10j]
grid_sparse = ogrid[-1:1:10j, -2:2:10j]
# sparse grids can be made dense by broadcasting
grid_broadcast = np.broadcast_arrays(*grid_sparse)
for f, b in zip(grid_full, grid_broadcast):
assert_equal(f, b)
@pytest.mark.parametrize("start, stop, step, expected", [
(None, 10, 10j, (200, 10)),
(-10, 20, None, (1800, 30)),
])
def test_mgrid_size_none_handling(self, start, stop, step, expected):
# regression test None value handling for
# start and step values used by mgrid;
# internally, this aims to cover previously
# unexplored code paths in nd_grid()
grid = mgrid[start:stop:step, start:stop:step]
# need a smaller grid to explore one of the
# untested code paths
grid_small = mgrid[start:stop:step]
assert_equal(grid.size, expected[0])
assert_equal(grid_small.size, expected[1])
def test_accepts_npfloating(self):
# regression test for #16466
grid64 = mgrid[0.1:0.33:0.1, ]
grid32 = mgrid[np.float32(0.1):np.float32(0.33):np.float32(0.1), ]
assert_(grid32.dtype == np.float64)
assert_array_almost_equal(grid64, grid32)
# different code path for single slice
grid64 = mgrid[0.1:0.33:0.1]
grid32 = mgrid[np.float32(0.1):np.float32(0.33):np.float32(0.1)]
assert_(grid32.dtype == np.float64)
assert_array_almost_equal(grid64, grid32)
def test_accepts_npcomplexfloating(self):
# Related to #16466
assert_array_almost_equal(
mgrid[0.1:0.3:3j, ], mgrid[0.1:0.3:np.complex64(3j), ]
)
# different code path for single slice
assert_array_almost_equal(
mgrid[0.1:0.3:3j], mgrid[0.1:0.3:np.complex64(3j)]
)
class TestConcatenator:
def test_1d(self):
assert_array_equal(r_[1, 2, 3, 4, 5, 6], np.array([1, 2, 3, 4, 5, 6]))
b = np.ones(5)
c = r_[b, 0, 0, b]
assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
def test_mixed_type(self):
g = r_[10.1, 1:10]
assert_(g.dtype == 'f8')
def test_more_mixed_type(self):
g = r_[-10.1, np.array([1]), np.array([2, 3, 4]), 10.0]
assert_(g.dtype == 'f8')
def test_complex_step(self):
# Regression test for #12262
g = r_[0:36:100j]
assert_(g.shape == (100,))
# Related to #16466
g = r_[0:36:np.complex64(100j)]
assert_(g.shape == (100,))
def test_2d(self):
b = np.random.rand(5, 5)
c = np.random.rand(5, 5)
d = r_['1', b, c] # append columns
assert_(d.shape == (5, 10))
assert_array_equal(d[:, :5], b)
assert_array_equal(d[:, 5:], c)
d = r_[b, c]
assert_(d.shape == (10, 5))
assert_array_equal(d[:5, :], b)
assert_array_equal(d[5:, :], c)
def test_0d(self):
assert_equal(r_[0, np.array(1), 2], [0, 1, 2])
assert_equal(r_[[0, 1, 2], np.array(3)], [0, 1, 2, 3])
assert_equal(r_[np.array(0), [1, 2, 3]], [0, 1, 2, 3])
class TestNdenumerate:
def test_basic(self):
a = np.array([[1, 2], [3, 4]])
assert_equal(list(ndenumerate(a)),
[((0, 0), 1), ((0, 1), 2), ((1, 0), 3), ((1, 1), 4)])
class TestIndexExpression:
def test_regression_1(self):
# ticket #1196
a = np.arange(2)
assert_equal(a[:-1], a[s_[:-1]])
assert_equal(a[:-1], a[index_exp[:-1]])
def test_simple_1(self):
a = np.random.rand(4, 5, 6)
assert_equal(a[:, :3, [1, 2]], a[index_exp[:, :3, [1, 2]]])
assert_equal(a[:, :3, [1, 2]], a[s_[:, :3, [1, 2]]])
class TestIx_:
def test_regression_1(self):
# Test empty untyped inputs create outputs of indexing type, gh-5804
a, = np.ix_(range(0))
assert_equal(a.dtype, np.intp)
a, = np.ix_([])
assert_equal(a.dtype, np.intp)
# but if the type is specified, don't change it
a, = np.ix_(np.array([], dtype=np.float32))
assert_equal(a.dtype, np.float32)
def test_shape_and_dtype(self):
sizes = (4, 5, 3, 2)
# Test both lists and arrays
for func in (range, np.arange):
arrays = np.ix_(*[func(sz) for sz in sizes])
for k, (a, sz) in enumerate(zip(arrays, sizes)):
assert_equal(a.shape[k], sz)
assert_(all(sh == 1 for j, sh in enumerate(a.shape) if j != k))
assert_(np.issubdtype(a.dtype, np.integer))
def test_bool(self):
bool_a = [True, False, True, True]
int_a, = np.nonzero(bool_a)
assert_equal(np.ix_(bool_a)[0], int_a)
def test_1d_only(self):
idx2d = [[1, 2, 3], [4, 5, 6]]
assert_raises(ValueError, np.ix_, idx2d)
def test_repeated_input(self):
length_of_vector = 5
x = np.arange(length_of_vector)
out = ix_(x, x)
assert_equal(out[0].shape, (length_of_vector, 1))
assert_equal(out[1].shape, (1, length_of_vector))
# check that input shape is not modified
assert_equal(x.shape, (length_of_vector,))
def test_c_():
a = np.c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])]
assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]])
class TestFillDiagonal:
def test_basic(self):
a = np.zeros((3, 3), int)
fill_diagonal(a, 5)
assert_array_equal(
a, np.array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5]])
)
def test_tall_matrix(self):
a = np.zeros((10, 3), int)
fill_diagonal(a, 5)
assert_array_equal(
a, np.array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
)
def test_tall_matrix_wrap(self):
a = np.zeros((10, 3), int)
fill_diagonal(a, 5, True)
assert_array_equal(
a, np.array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5],
[0, 0, 0],
[5, 0, 0],
[0, 5, 0],
[0, 0, 5],
[0, 0, 0],
[5, 0, 0],
[0, 5, 0]])
)
def test_wide_matrix(self):
a = np.zeros((3, 10), int)
fill_diagonal(a, 5)
assert_array_equal(
a, np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 5, 0, 0, 0, 0, 0, 0, 0]])
)
def test_operate_4d_array(self):
a = np.zeros((3, 3, 3, 3), int)
fill_diagonal(a, 4)
i = np.array([0, 1, 2])
assert_equal(np.where(a != 0), (i, i, i, i))
def test_low_dim_handling(self):
# raise error with low dimensionality
a = np.zeros(3, int)
with assert_raises_regex(ValueError, "at least 2-d"):
fill_diagonal(a, 5)
def test_hetero_shape_handling(self):
# raise error with high dimensionality and
# shape mismatch
a = np.zeros((3,3,7,3), int)
with assert_raises_regex(ValueError, "equal length"):
fill_diagonal(a, 2)
def test_diag_indices():
di = diag_indices(4)
a = np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16]])
a[di] = 100
assert_array_equal(
a, np.array([[100, 2, 3, 4],
[5, 100, 7, 8],
[9, 10, 100, 12],
[13, 14, 15, 100]])
)
# Now, we create indices to manipulate a 3-d array:
d3 = diag_indices(2, 3)
# And use it to set the diagonal of a zeros array to 1:
a = np.zeros((2, 2, 2), int)
a[d3] = 1
assert_array_equal(
a, np.array([[[1, 0],
[0, 0]],
[[0, 0],
[0, 1]]])
)
class TestDiagIndicesFrom:
def test_diag_indices_from(self):
x = np.random.random((4, 4))
r, c = diag_indices_from(x)
assert_array_equal(r, np.arange(4))
assert_array_equal(c, np.arange(4))
def test_error_small_input(self):
x = np.ones(7)
with assert_raises_regex(ValueError, "at least 2-d"):
diag_indices_from(x)
def test_error_shape_mismatch(self):
x = np.zeros((3, 3, 2, 3), int)
with assert_raises_regex(ValueError, "equal length"):
diag_indices_from(x)
def test_ndindex():
x = list(ndindex(1, 2, 3))
expected = [ix for ix, e in ndenumerate(np.zeros((1, 2, 3)))]
assert_array_equal(x, expected)
x = list(ndindex((1, 2, 3)))
assert_array_equal(x, expected)
# Test use of scalars and tuples
x = list(ndindex((3,)))
assert_array_equal(x, list(ndindex(3)))
# Make sure size argument is optional
x = list(ndindex())
assert_equal(x, [()])
x = list(ndindex(()))
assert_equal(x, [()])
# Make sure 0-sized ndindex works correctly
x = list(ndindex(*[0]))
assert_equal(x, [])